算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-002如何改进算法
1.
package algorithms.analysis14; import algorithms.util.In;
import algorithms.util.StdOut; /******************************************************************************
* Compilation: javac TwoSum.java
* Execution: java TwoSum input.txt
* Dependencies: StdOut.java In.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with N^2 running time. Read in N integers
* and counts the number of pairs that sum to exactly 0.
*
*
* Limitations
* -----------
* - we ignore integer overflow
*
*
* % java TwoSum 2Kints.txt
* 2
*
* % java TwoSum 1Kints.txt
* 1
*
* % java TwoSum 2Kints.txt
* 2
*
* % java TwoSum 4Kints.txt
* 3
*
* % java TwoSum 8Kints.txt
* 19
*
* % java TwoSum 16Kints.txt
* 66
*
* % java TwoSum 32Kints.txt
* 273
*
******************************************************************************/ public class TwoSum { // print distinct pairs (i, j) such that a[i] + a[j] = 0
public static void printAll(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
if (a[i] + a[j] == 0) {
StdOut.println(a[i] + " " + a[j]);
}
}
}
} // return number of distinct triples (i, j) such that a[i] + a[j] = 0
public static int count(int[] a) {
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
if (a[i] + a[j] == 0) {
cnt++;
}
}
}
return cnt;
} public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts();
Stopwatch timer = new Stopwatch();
int cnt = count(a);
StdOut.println("elapsed time = " + timer.elapsedTime());
StdOut.println(cnt);
}
}
The answer to this question is that we have discussed and used two classic algorithms,
mergesort and binary search, have introduced the facts that the mergesort is linearith-
mic and binary search is logarithmic.
2.
package algorithms.analysis14; /******************************************************************************
* Compilation: javac TwoSumFast.java
* Execution: java TwoSumFast input.txt
* Dependencies: In.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with N log N running time. Read in N integers
* and counts the number of pairs that sum to exactly 0.
*
* Limitations
* -----------
* - we ignore integer overflow
*
*
* % java TwoSumFast 2Kints.txt
* 2
*
* % java TwoSumFast 1Kints.txt
* 1
*
* % java TwoSumFast 2Kints.txt
* 2
*
* % java TwoSumFast 4Kints.txt
* 3
*
* % java TwoSumFast 8Kints.txt
* 19
*
* % java TwoSumFast 16Kints.txt
* 66
*
* % java TwoSumFast 32Kints.txt
* 273
*
******************************************************************************/ import java.util.Arrays; import algorithms.util.In;
import algorithms.util.StdOut; public class TwoSumFast { // print distinct pairs (i, j) such that a[i] + a[j] = 0
public static void printAll(int[] a) {
int N = a.length;
Arrays.sort(a);
for (int i = 0; i < N; i++) {
int j = Arrays.binarySearch(a, -a[i]);
if (j > i) StdOut.println(a[i] + " " + a[j]);
}
} // return number of distinct pairs (i, j) such that a[i] + a[j] = 0
public static int count(int[] a) {
int N = a.length;
Arrays.sort(a);
int cnt = 0;
for (int i = 0; i < N; i++) {
int j = Arrays.binarySearch(a, -a[i]);
if (j > i) cnt++;
}
return cnt;
} public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts();
int cnt = count(a);
StdOut.println(cnt);
}
}
3.
package algorithms.analysis14; import algorithms.util.In;
import algorithms.util.StdOut; /******************************************************************************
* Compilation: javac ThreeSum.java
* Execution: java ThreeSum input.txt
* Dependencies: In.java StdOut.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with cubic running time. Read in N integers
* and counts the number of triples that sum to exactly 0
* (ignoring integer overflow).
*
* % java ThreeSum 1Kints.txt
* 70
*
* % java ThreeSum 2Kints.txt
* 528
*
* % java ThreeSum 4Kints.txt
* 4039
*
******************************************************************************/ /**
* The <tt>ThreeSum</tt> class provides static methods for counting
* and printing the number of triples in an array of integers that sum to 0
* (ignoring integer overflow).
* <p>
* This implementation uses a triply nested loop and takes proportional to N^3,
* where N is the number of integers.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/14analysis">Section 1.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class ThreeSum { // Do not instantiate.
private ThreeSum() { } /**
* Prints to standard output the (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
*/
public static void printAll(int[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
for (int k = j+1; k < N; k++) {
if (a[i] + a[j] + a[k] == 0) {
StdOut.println(a[i] + " " + a[j] + " " + a[k]);
}
}
}
}
} /**
* Returns the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
* @return the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0
*/
public static int count(int[] a) {
int N = a.length;
int cnt = 0;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
for (int k = j+1; k < N; k++) {
if (a[i] + a[j] + a[k] == 0) {
cnt++;
}
}
}
}
return cnt;
} /**
* Reads in a sequence of integers from a file, specified as a command-line argument;
* counts the number of triples sum to exactly zero; prints out the time to perform
* the computation.
*/
public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts(); Stopwatch timer = new Stopwatch();
int cnt = count(a);
StdOut.println("elapsed time = " + timer.elapsedTime());
StdOut.println(cnt);
}
}
4.
package algorithms.analysis14; /******************************************************************************
* Compilation: javac ThreeSumFast.java
* Execution: java ThreeSumFast input.txt
* Dependencies: StdOut.java In.java Stopwatch.java
* Data files: http://algs4.cs.princeton.edu/14analysis/1Kints.txt
* http://algs4.cs.princeton.edu/14analysis/2Kints.txt
* http://algs4.cs.princeton.edu/14analysis/4Kints.txt
* http://algs4.cs.princeton.edu/14analysis/8Kints.txt
* http://algs4.cs.princeton.edu/14analysis/16Kints.txt
* http://algs4.cs.princeton.edu/14analysis/32Kints.txt
* http://algs4.cs.princeton.edu/14analysis/1Mints.txt
*
* A program with N^2 log N running time. Read in N integers
* and counts the number of triples that sum to exactly 0.
*
* Limitations
* -----------
* - we ignore integer overflow
* - doesn't handle case when input has duplicates
*
*
* % java ThreeSumFast 1Kints.txt
* 70
*
* % java ThreeSumFast 2Kints.txt
* 528
*
* % java ThreeSumFast 4Kints.txt
* 4039
*
* % java ThreeSumFast 8Kints.txt
* 32074
*
* % java ThreeSumFast 16Kints.txt
* 255181
*
* % java ThreeSumFast 32Kints.txt
* 2052358
*
******************************************************************************/ import java.util.Arrays; import algorithms.util.In;
import algorithms.util.StdOut; /**
* The <tt>ThreeSumFast</tt> class provides static methods for counting
* and printing the number of triples in an array of distinct integers that
* sum to 0 (ignoring integer overflow).
* <p>
* This implementation uses sorting and binary search and takes time
* proportional to N^2 log N, where N is the number of integers.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/14analysis">Section 1.4</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class ThreeSumFast { // Do not instantiate.
private ThreeSumFast() { } // returns true if the sorted array a[] contains any duplicated integers
private static boolean containsDuplicates(int[] a) {
for (int i = 1; i < a.length; i++)
if (a[i] == a[i-1]) return true;
return false;
} /**
* Prints to standard output the (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
* @throws IllegalArgumentException if the array contains duplicate integers
*/
public static void printAll(int[] a) {
int N = a.length;
Arrays.sort(a);
if (containsDuplicates(a)) throw new IllegalArgumentException("array contains duplicate integers");
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
int k = Arrays.binarySearch(a, -(a[i] + a[j]));
if (k > j) StdOut.println(a[i] + " " + a[j] + " " + a[k]);
}
}
} /**
* Returns the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0.
* @param a the array of integers
* @return the number of triples (i, j, k) with i < j < k such that a[i] + a[j] + a[k] == 0
*/
public static int count(int[] a) {
int N = a.length;
Arrays.sort(a);
if (containsDuplicates(a)) throw new IllegalArgumentException("array contains duplicate integers");
int cnt = 0;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
int k = Arrays.binarySearch(a, -(a[i] + a[j]));
if (k > j) cnt++;
}
}
return cnt;
} /**
* Reads in a sequence of distinct integers from a file, specified as a command-line argument;
* counts the number of triples sum to exactly zero; prints out the time to perform
* the computation.
*/
public static void main(String[] args) {
In in = new In(args[0]);
int[] a = in.readAllInts();
int cnt = count(a);
StdOut.println(cnt);
}
}

算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-002如何改进算法的更多相关文章
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-005计测试算法
1. package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; / ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-007按位置,找出数组相关最大值
Given an array a[] of N real numbers, design a linear-time algorithm to find the maximum value of a[ ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-006BitonicMax
package algorithms.analysis14; import algorithms.util.StdOut; import algorithms.util.StdRandom; /*** ...
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-004计算内存
1. 2. 3.字符串
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-003定理
1. 2. 3. 4. 5. 6.
- 算法Sedgewick第四版-第1章基础-1.4 Analysis of Algorithms-001分析步骤
For many programs, developing a mathematical model of running timereduces to the following steps:■De ...
- 算法Sedgewick第四版-第1章基础-001递归
一. 方法可以调用自己(如果你对递归概念感到奇怪,请完成练习 1.1.16 到练习 1.1.22).例如,下面给出了 BinarySearch 的 rank() 方法的另一种实现.我们会经常使用递归, ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)
一.介绍 1.算法的时间和空间间复杂度 2.特点 Running time is insensitive to input. The process of finding the smallest i ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-007归并排序(自下而上)
一. 1. 2. 3. 二.代码 package algorithms.mergesort22; import algorithms.util.StdIn; import algorithms.uti ...
随机推荐
- SVN中如何为文件夹中的所有文件加锁
经过一段时间的试用,发现不加锁的共享式开发还是不太方便.还是全部设置为独占式加锁,如有共享式修改需求再设置为不加锁比较好. 经过一番摸索,总结出如下的加锁方式是可行的: 注:第一步是必须的,必须完成第 ...
- Spring_总结_02_依赖注入
一.前言 本文承接上一节:Spring_总结_01_Spring概述 在上一节中,我们了解了Spring的最根本使命.四大原则.六大模块以及Spring的生态. 这一节我们开始了解Spring的第二大 ...
- LeetCode OJ:Symmetric Tree(对称的树)
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For e ...
- Thinkphp5.0 获取新增数据的ID
// 方法1 insertGetId方法新增数据并返回主键值使用getLastInsID方法: Db::name('user')->insert($data); $userId = Db::na ...
- Scala极速入门
摘要 当面向对象遇到函数式编程,这就是Scala.简练的语言描述与简单的例子相辅相成,希望能够对大家学习Scala有所帮助. scala 入门 定义 Scala语言是一种面向对象语言,同时又结合了命令 ...
- sql server 纵横表的转换
在平常的工作中或者面试中,我们可能有遇到过数据库的纵横表的转换问题.今天我们就来讨论下. 1.创建表 首先我们来创建一张表. sql语句: --1. 创建数据表 if OBJECT_ID('Score ...
- js改变select的选中项不触发select的change事件
// test var selectEl = document.querySelector('select') var buttonEl = document.querySelector('butto ...
- 如果两个人,两台电脑同时登录同一个帐号,同时对同一个账单提交,账单同时被服务器处理,那服务器应该先处理谁的,或者怎么规避这个问题。 非单点登录,重定向,stoken拦截器的问题
方法一:给用户设置个状态 服务器端坐标记,比如数据库中增加一列,标识是否登陆,登录时先判断这个就行了,不过要考虑非正常退出的情况 http 方法二:在用户表里面 多加一个状态字段,登录成功 改变状态 ...
- tableau-创建帕累托图
参考文献:https://onlinehelp.tableau.com/current/pro/desktop/zh-cn/pareto.html 帕累托图是一种按发生频率排序的特殊直方图.在质量管理 ...
- Number Sequence (KMP的应用)
个人心得:朴素代码绝对超时,所以要用到KMP算法,特意了解了,还是比较抽象,要多体会 Given two sequences of numbers : a11, a22, ...... , aNN, ...