bzoj 3533: [Sdoi2014]向量集 线段树维护凸包
题目大意:
题解:
首先我们把这些向量都平移到原点.这样我们就发现:
对于每次询问所得到的ans一定由凸包上的点做出贡献。
我们按照给出的询问点的纵坐标的正负做出划分:
若为正:那么对答案做出贡献的点一定在上凸壳上
若为负:那么对答案做出贡献的点一定在下凸壳上
所以我们可以分别考虑上下凸壳.不失一般性,我们假设纵坐标为正.
那么这时候答案肯定在上凸壳上
并且这个上凸壳上的所有点和询问点组成的答案一定是一个单峰函数
所以我们三分解决这个问题
那么现在的问题就是解决查询的是一个区间的问题了
首先我们发现,对于不同的区间的查询结果,合并时只需要去max即可
所以我们可以把询问的区间拆成若干个区间合并得到结果
所以我们用线段树维护即可.
但是合并凸包的复杂度是\(O(n)\),我们不可能每次插入一个点都更新
但是我们发现,对于每个区间,只有里面所有的点都被插入后才可能会被查询到
所以我们只在一个区间内所有的点都被插入后再合并左右子树的凸包即可.
复杂度?
每个点只会被合并\(logn\)次,每次查询是\(log^2n\)的
所以总复杂度是\(O(mlog^2n)\)
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
template<typename T>inline void read(T &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
inline ll cat_max(const ll &a,const ll &b){return a>b ? a:b;}
inline ll cat_min(const ll &a,const ll &b){return a<b ? a:b;}
const ll maxn = 400010;
struct Point{
ll x,y;
Point(const ll &a=0,const ll &b=0){x=a;y=b;}
bool friend operator < (const Point &a,const Point &b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
void print(){
printf("Point : (%lld,%lld)\n",x,y);
}
};
Point operator - (const Point &a,const Point &b){
return Point(a.x-b.x,a.y-b.y);
}
ll operator * (const Point &a,const Point &b){
return a.x*b.x + a.y*b.y;
}
ll cross(const Point &a,const Point &b){
return a.x*b.y - a.y*b.x;
}
struct SB{
int cmd,l,r,id;
Point p;
}op[maxn];
int nowpos;
inline void Unionu(const vector<Point> &a,const vector<Point> &b,vector<Point> &c){
c.clear();int m = 0,siza = a.size(),sizb = b.size(),i=0,j=0;
Point p;
while(i < siza || j < sizb){
if((i == siza) || ((j < sizb) && (b[j] < a[i]))) p = b[j++];
else p = a[i++];
while(m > 1 && cross(c[m-1] - c[m-2],p - c[m-1]) >= 0) -- m,c.pop_back();
m++;c.push_back(p);
}
}
inline void Uniond(const vector<Point> &a,const vector<Point> &b,vector<Point> &c){
c.clear();int m = 0,siza = a.size(),sizb = b.size(),i=0,j=0;
Point p;
while(i < siza || j < sizb){
if((i == siza) || ((j < sizb) && (b[j] < a[i]))) p = b[j++];
else p = a[i++];
while(m > 1 && cross(c[m-1] - c[m-2],p - c[m-1]) <= 0) -- m,c.pop_back();
m++;c.push_back(p);
}
}
struct Node{
vector<Point>Tu,Td;
Node *ch[2];
}*null,*root;
inline void init(){
null = new Node();null->ch[0] = null->ch[1] = null;
null->Tu.clear();null->Td.clear();root = null;
}
inline Node* newNode(){
Node *p = new Node();p->ch[0] = p->ch[1] = null;
p->Tu.clear();p->Td.clear();return p;
}
void insert(Node* &p,int l,int r){
if(p == null) p = newNode();
if(l == r){
p->Tu.clear();p->Td.clear();
p->Tu.push_back(op[nowpos].p);
p->Td.push_back(op[nowpos].p);
return;
}
int mid = (l+r) >> 1;
if(op[nowpos].id <= mid) insert(p->ch[0],l,mid);
else insert(p->ch[1],mid+1,r);
if(op[nowpos].id == r){
Unionu(p->ch[0]->Tu,p->ch[1]->Tu,p->Tu);
Uniond(p->ch[0]->Td,p->ch[1]->Td,p->Td);
}return;
}
ll query(const vector<Point> &v){
int l = 0,r = v.size()-1;
while(l + 3 <= r){
int midx = (l+l+r)/3;
int midy = (l+r+r)/3;
if((v[midx]*op[nowpos].p) > (v[midy]*op[nowpos].p)) r = midy;
else l = midx;
}
ll ret = -(1LL<<60);
for(int i=l;i<=r;++i) ret = max(ret,v[i]*op[nowpos].p);
return ret;
}
ll queryu(Node *p,int l,int r){
if(op[nowpos].l <= l && r <= op[nowpos].r) return query(p->Tu);
int mid = (l+r) >> 1;
if(op[nowpos].r <= mid) return queryu(p->ch[0],l,mid);
if(op[nowpos].l > mid) return queryu(p->ch[1],mid+1,r);
return max(queryu(p->ch[0],l,mid),queryu(p->ch[1],mid+1,r));
}
ll queryd(Node *p,int l,int r){
if(op[nowpos].l <= l && r <= op[nowpos].r) return query(p->Td);
int mid = (l+r) >> 1;
if(op[nowpos].r <= mid) return queryd(p->ch[0],l,mid);
if(op[nowpos].l > mid) return queryd(p->ch[1],mid+1,r);
return max(queryd(p->ch[0],l,mid),queryd(p->ch[1],mid+1,r));
}
ll lastans = 0;
#define decode(x) (x = (x^(lastans & 0x7fffffff)))
int main(){
char ch;int cnt = 0;
int n;read(n);while(ch=getchar(),ch<'!');
bool e = true;if(ch == 'E') e = false;
for(int i=1;i<=n;++i){
while(ch=getchar(),ch<'!');op[i].cmd = ch == 'A';
if(op[i].cmd){
++cnt;read(op[i].p.x);read(op[i].p.y);
op[i].id = cnt;
}else{
read(op[i].p.x);read(op[i].p.y);
read(op[i].l);read(op[i].r);
}
}
for(int i=1;i<=n;++i){
if(op[i].cmd){
if(e) decode(op[i].p.x),decode(op[i].p.y);
nowpos = i;
insert(root,1,cnt);
}else{
if(e){
decode(op[i].p.x);decode(op[i].p.y);
decode(op[i].l);decode(op[i].r);
}
nowpos = i;
if(op[i].p.y > 0) lastans = queryu(root,1,cnt);
else lastans = queryd(root,1,cnt);
//lastans = max(queryd(root,1,cnt),queryu(root,1,cnt));
printf("%lld\n",lastans);
}
}
getchar();getchar();
return 0;
}
但貌似官方题解有更巧妙的做法...

bzoj 3533: [Sdoi2014]向量集 线段树维护凸包的更多相关文章
- BZOJ 3533: [Sdoi2014]向量集( 线段树 + 三分 )
答案一定是在凸壳上的(y>0上凸壳, y<0下凸壳). 线段树维护, 至多N次询问, 每次询问影响O(logN)数量级的线段树结点, 每个结点O(logN)暴力建凸壳, 然后O(logN) ...
- bzoj 3533 [Sdoi2014]向量集 线段树+凸包+三分(+动态开数组) 好题
题目大意 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); "Q x y l r (|x|,|y| & ...
- BZOJ3533:[SDOI2014]向量集(线段树,三分,凸包)
Description 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); " Q x y l r (| ...
- 【bzoj3533】[Sdoi2014]向量集 线段树+STL-vector维护凸包
题目描述 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);"Q x y l r (|x|,|y| < ...
- BZOJ 3672[NOI2014]购票(树链剖分+线段树维护凸包+斜率优化) + BZOJ 2402 陶陶的难题II (树链剖分+线段树维护凸包+分数规划+斜率优化)
前言 刚开始看着两道题感觉头皮发麻,后来看看题解,发现挺好理解,只是代码有点长. BZOJ 3672[NOI2014]购票 中文题面,题意略: BZOJ 3672[NOI2014]购票 设f(i)f( ...
- BZOJ 3910 并查集+线段树合并
思路: 1. 并查集+线段树合并 记得f[LCA]==LCA的时候 f[LCA]=fa[LCA] 2.LCT(并不会写啊...) //By SiriusRen #include <cstdio& ...
- [SDOI2014][BZOJ3533] 向量集 [线段树+凸包]
题面 BZOJ传送门 思路 首先当然是推式子 对于一个询问点$(x_0,y_0$和给定向量$(x_1,y_1)$来说,点积这么表达: $A=x_0x_1+y_0y_1$ 首先肯定是考虑大小关系:$x_ ...
- YYHS-猜数字(并查集/线段树维护)
题目描述 LYK在玩猜数字游戏. 总共有n个互不相同的正整数,LYK每次猜一段区间的最小值.形如[li,ri]这段区间的数字的最小值一定等于xi. 我们总能构造出一种方案使得LY ...
- 【BZOJ】4311: 向量(线段树分治板子题)
题解 我们可以根据点积的定义,垂直于原点到给定点构成的直线作一条直线,从正无穷往下平移,第一个碰到的点就是答案 像什么,上凸壳哇 可是--动态维护上凸壳? 我们可以离线,计算每个点能造成贡献的一个询问 ...
随机推荐
- hdu1695(容斥 or 莫比乌斯反演)
刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...
- 九度OJ 1343:城际公路网 (最小生成树)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:445 解决:178 题目描述: 为了加快城市之间的通行和物资流动速度,A国政府决定在其境内的N个大中型城市之间,增加修建K条公路.已知这N个 ...
- every row of W is a classifier for one of the classes
every row of W is a classifier for one of the classes As we saw above, every row of W is a classifie ...
- What I learned from competing against a ConvNet on ImageNet
http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
- 【题解】P2161[SHOI2009]会场预约(set)
[题解][P2161 SHOI2009]会场预约 题目很像[[题解]APIO2009]会议中心 \(set\)大法好啊! 然后我们有个小\(trick\)(炒鸡帅),就是如何优雅地判断线段交? str ...
- Android中的资源访问
Android中的资源是指非代码部分,指外部文件. assets中保存的一般是原生的文件,例如MP3文件,Android程序不能直接访问,必须通过AssetManager类以二进制流的形式来读取. r ...
- statu 设置
DATA: itab TYPE TABLE OF sy-ucomm. APPEND 'DELE' TO itab. APPEND 'PICK' TO itab. SET PF-STATUS 'STA3 ...
- 遇到IIS configuration error错误的可以看看,不一定是权限问题
最近接手了别人的一个 DOT NET项目,编译.调试一切都OK(心里暗暗高兴),发布吧,结果放到服务器上一运行出现Configuration Error错误,提示:“Access to the pat ...
- Bootstrap学习5--bootstrap中的模态框(modal,弹出层)
bootstrap中的模态框(modal),不同于Tooltips,模态框以弹出对话框的形式出现,具有最小和最实用的功能集. 务必将模态框的 HTML 代码放在文档的最高层级内(也就是说,尽量作为 b ...
- ButterKnife 原理解析
一.使用方法 1.添加依赖. implementation 'com.jakewharton:butterknife:8.8.1' annotationProcessor 'com.jakewhart ...