Dropout & Maxout
Dropout & Maxout
Back to Content Page
PDF Version Available Here
--------------------------------------------------------------------
In the last post when we looked at the techniques for convolutional neural networks, we have mentioned dropout as a technique to control sparsity. Here let's look at the details of it and let's look at another similar technique called maxout. Again, these techniques are not constrained only to convolutional neural networks, but can be applied to almost any deep networks, or at least feedforward deep networks.
Dropout

To state this a little more formally: one each training case, each hidden unit is randomly omitted from the network with a probability of p. One thing to notice though, the selected dropout units are different for each training instance, that's why this is more of a training problem, rather than an architecture problem.
As stated in the origin paper by Hilton et al, another view to look at dropout makes this solution interesting. Dropout can be seen as an efficient way to perform model averaging across a large number of different neural networks, where overfitting can be avoided with much less cost of computation.
Initially in the paper, dropout is discussed under p=0.5, but of course it could basically set up to any probability.
Maxout
If you find this helpful, please cite:
Wang, Haohan, and Bhiksha Raj. "A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas." arXiv preprint arXiv:1510.04781 (2015).
By Haohan Wang
Note: I am still a student learning everything, there may be mistakes due to my limited knowledge. Please feel free to tell me wherever you find incorrect or uncomfortable with. Thank you.
Main Reference:
- Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).
- Goodfellow, Ian J., et al. "Maxout networks." arXiv preprint arXiv:1302.4389 (2013).
Dropout & Maxout的更多相关文章
- Deep learning:四十五(maxout简单理解)
maxout出现在ICML2013上,作者Goodfellow将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start ...
- [转]理解dropout
理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443 理解dropout 注意:图片都在github上 ...
- 激活函数(ReLU, Swish, Maxout)
神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[ \begin{equation} f(x)= \b ...
- 【机器学习】激活函数(ReLU, Swish, Maxout)
https://blog.csdn.net/ChenVast/article/details/81382939 神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectifie ...
- 激活函数--(Sigmoid,tanh,Relu,maxout)
Question? 激活函数是什么? 激活函数有什么用? 激活函数怎么用? 激活函数有哪几种?各自特点及其使用场景? 1.激活函数 1.1激活函数是什么? 激活函数的主要作用是提供网络的非线性建模能力 ...
- 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...
- 理解dropout
理解dropout 注意:图片都在github上放着,如果刷不开的话,可以考虑FQ. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/490 ...
- 激活函数,Batch Normalization和Dropout
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神 ...
- 在RNN中使用Dropout
dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上. LSTM的长期记 ...
随机推荐
- > Task :app:transformDexArchiveWithExternalLibsDexMergerForDebug FAILED
> Task :app:transformDexArchiveWithExternalLibsDexMergerForDebug FAILED D8: Cannot fit requested ...
- Composite模式(组合设计模式)
Composite 设计模式? 在计算机的文件系统中,有"文件夹"的概念(在有些操作系统(Linux操作系统)中,也称为"目录").文件夹里面既可以放入文件,也 ...
- Sharepoint JSCOM 列表操作
SP.SOD.executeFunc('sp.js', 'SP.ClientContext', retrieveListItemsInclude); //确保js文件加载,再执行方法 function ...
- js中去掉字符中间空格和首尾空格
转载: https://www.jb51.net/article/109522.htm 1. 去掉字符串前后所有空格: 代码如下: ? 1 2 3 4 function Trim(str) { ...
- 在Pycharm中写python代码时光标变粗
在练习写python代码时,不小心摁了Insert键,结果光标变粗. 如下图所示: 原因: 和word一样,在编辑文本或代码时,有两种模式:改写和插入模式. 当我们在编辑文章或者是代码时,应该将模式设 ...
- 牛客网Java刷题知识点之插入排序(直接插入排序和希尔排序)、选择排序(直接选择排序和堆排序)、冒泡排序、快速排序、归并排序和基数排序(博主推荐)
不多说,直接上干货! 插入排序包括直接插入排序.希尔排序. 1.直接插入排序: 如何写成代码: 首先设定插入次数,即循环次数,for(int i=1;i<length;i++),1个数的那次不用 ...
- win7,docker安装后,创建虚拟机分配不了ip错误 err: exit status 255
问题 win7装docker真麻烦,不如家里的win10爽.另外明明这是个很简单的操作,但是国内的解决方法有点落后,所以我写了个傻瓜式的. 有兴趣的可以直接看issue https://github. ...
- linux服务器安装nodejs运行环境
安装nodejs运行环境 第一步:到node官网下载相应版本的安装包,将安装包放置服务器上,路径为 usr/local/node(可根据自身情况进行修改) 第二步:解压 ***.tar.xz格式文件需 ...
- Apache Spark 2.2.0 中文文档 - Structured Streaming 编程指南 | ApacheCN
Structured Streaming 编程指南 概述 快速示例 Programming Model (编程模型) 基本概念 处理 Event-time 和延迟数据 容错语义 API 使用 Data ...
- WIn10 电脑运行Docker
参考地址: https://www.cnblogs.com/linjj/p/5606687.html https://docs.docker.com/engine/reference/commandl ...