Dropout & Maxout
Dropout & Maxout
Back to Content Page
PDF Version Available Here
--------------------------------------------------------------------
In the last post when we looked at the techniques for convolutional neural networks, we have mentioned dropout as a technique to control sparsity. Here let's look at the details of it and let's look at another similar technique called maxout. Again, these techniques are not constrained only to convolutional neural networks, but can be applied to almost any deep networks, or at least feedforward deep networks.
Dropout

To state this a little more formally: one each training case, each hidden unit is randomly omitted from the network with a probability of p. One thing to notice though, the selected dropout units are different for each training instance, that's why this is more of a training problem, rather than an architecture problem.
As stated in the origin paper by Hilton et al, another view to look at dropout makes this solution interesting. Dropout can be seen as an efficient way to perform model averaging across a large number of different neural networks, where overfitting can be avoided with much less cost of computation.
Initially in the paper, dropout is discussed under p=0.5, but of course it could basically set up to any probability.
Maxout
If you find this helpful, please cite:
Wang, Haohan, and Bhiksha Raj. "A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas." arXiv preprint arXiv:1510.04781 (2015).
By Haohan Wang
Note: I am still a student learning everything, there may be mistakes due to my limited knowledge. Please feel free to tell me wherever you find incorrect or uncomfortable with. Thank you.
Main Reference:
- Hinton, Geoffrey E., et al. "Improving neural networks by preventing co-adaptation of feature detectors." arXiv preprint arXiv:1207.0580 (2012).
- Goodfellow, Ian J., et al. "Maxout networks." arXiv preprint arXiv:1302.4389 (2013).
Dropout & Maxout的更多相关文章
- Deep learning:四十五(maxout简单理解)
maxout出现在ICML2013上,作者Goodfellow将maxout和dropout结合后,号称在MNIST, CIFAR-10, CIFAR-100, SVHN这4个数据上都取得了start ...
- [转]理解dropout
理解dropout 原文地址:http://blog.csdn.net/stdcoutzyx/article/details/49022443 理解dropout 注意:图片都在github上 ...
- 激活函数(ReLU, Swish, Maxout)
神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectified Linear Unit,修正线性单元) 形式如下: \[ \begin{equation} f(x)= \b ...
- 【机器学习】激活函数(ReLU, Swish, Maxout)
https://blog.csdn.net/ChenVast/article/details/81382939 神经网络中使用激活函数来加入非线性因素,提高模型的表达能力. ReLU(Rectifie ...
- 激活函数--(Sigmoid,tanh,Relu,maxout)
Question? 激活函数是什么? 激活函数有什么用? 激活函数怎么用? 激活函数有哪几种?各自特点及其使用场景? 1.激活函数 1.1激活函数是什么? 激活函数的主要作用是提供网络的非线性建模能力 ...
- 深度学习方法(十):卷积神经网络结构变化——Maxout Networks,Network In Network,Global Average Pooling
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 最近接下来几篇博文会回到神经网络结构 ...
- 理解dropout
理解dropout 注意:图片都在github上放着,如果刷不开的话,可以考虑FQ. 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/490 ...
- 激活函数,Batch Normalization和Dropout
神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神 ...
- 在RNN中使用Dropout
dropout在前向神经网络中效果很好,但是不能直接用于RNN,因为RNN中的循环会放大噪声,扰乱它自己的学习.那么如何让它适用于RNN,就是只将它应用于一些特定的RNN连接上. LSTM的长期记 ...
随机推荐
- 2017-10-1 清北刷题冲刺班a.m
位运算1 (bit) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK拥有一个十进制的数N.它赋予了N一个新的意义:将N每一位都拆开来后再加起来就是N所拥 ...
- 自定义进度条PictureProgressBar——从开发到开源发布全过程
自定义进度条PictureProgressBar——从开发到开源发布全过程 出处: 炎之铠邮箱:yanzhikai_yjk@qq.com 本文原创,转载请注明本出处! 本项目JCenter地址:htt ...
- 为CentOS下的Docker安装配置python3【转】
* 安装python3以及docker yum install docker docker pull centos service docker start systemctl enable dock ...
- Mybatis插件Plugin
Mybatis开源Plugin中最熟知的pagehelper,重点made in China 很多人开始用pagehelper时候,肯定很纳闷,以mysql为例,明明没有加limit语句,为什么打印出 ...
- ThreadFactory 线程池工厂
import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Thr ...
- mysql /etc/my.cnf
[client] port=3306 socket = /tmp/mysql.sock default-character-set=utf8 [mysqld] # 1 general config p ...
- myeclipse集成svn客户端
转载大神 https://blog.csdn.net/tandeng19901222/article/details/5979075
- python_魔法方法(四):属性访问
通常可以通过点(.)操作符的形式去访问对象的属性,也可以通过BIF适当地去访问属性,看个例子吧 >>> class A(): def __init__(self): self.x = ...
- 一步一步在Windows中使用MyCat负载均衡
一步一步在Windows中使用MyCat负载均衡 http://www.cnblogs.com/zhangs1986/p/6408981.html mycat+sqlServer简单demo配置 ...
- 注意ie6的盒模型
浏览器版本多了,也是一个累,特别是ie家族的. 网上搜罗了一大堆,发现说的和我看到的不一样啊,结果才发现原来是对方表述有问题,省略了几个字就产生了歧义了. 按照网上说的ie6对盒模型解释不符合W3C标 ...