zoj 3827 Information Entropy 【水题】
Information Entropy
Time Limit: 2 Seconds
Memory Limit: 65536 KB Special Judge
Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.
Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information.
The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.
Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish
from other occurrences of the term, which appears in various parts of physics in different forms.
Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variableX with possible values
{x1, x2, ..., xn} and probability mass functionP(X) as:



rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">
rev=2.5.3" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">
rev=2.5.3" alt="" style="height:14px; width:15px; margin-right:-0.02em">
rev=2.5.3" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">
rev=2.5.3" alt="" style="height:14px; width:6px; margin-right:0.01em">




rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">
rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">
Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">



rev=2.5.3" alt="" style="height:9px; width:6px; margin-right:0.07em">





rev=2.5.3" alt="" style="height:14px; width:6px; margin-right:0.01em">





rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" width="6" height="21" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">
Where b is the base of the logarithm used. Common values of b are 2, Euler's numbere, and 10. The unit of entropy is
bit for b = 2, nat for b = e, and
dit (or digit) for b = 10 respectively.
In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:



rev=2.5.3" alt="" style="height:13px; width:10px; vertical-align:-4px; margin-right:0.01em">


rev=2.5.3" alt="" style="height:14px; width:9px; margin-right:0.04em">
rev=2.5.3" width="15" height="5" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">
rev=2.5.3" width="6" height="14" alt="" style="height:14px; width:6px; margin-right:0.01em">



rev=2.5.3" alt="" style="height:9px; width:7px; margin-right:0.04em">



rev=2.5.3" alt="" style="height:13px; width:10px; vertical-align:-4px; margin-right:0.01em">
rev=2.5.3" alt="" style="height:1px; width:1px; margin-right:0.24em">
rev=2.5.3" alt="" style="height:9px; width:6px; margin-right:0em">
rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">
rev=2.5.3" alt="" style="height:13px; width:11px; vertical-align:-4px; margin-left:-0.03em; margin-right:0em">
Your task is to calculate the entropy of a finite sample with N values.
Input
There are multiple test cases. The first line of input contains an integer
T indicating the number of test cases. For each test case:
The first line contains an integer N (1 <= N <= 100) and a stringS. The string
S is one of "bit", "nat" or "dit", indicating the unit of entropy.
In the next line, there are N non-negative integers P1,P2, ..,
PN. Pi means the probability of thei-th value in percentage and the sum of
Pi will be 100.
Output
For each test case, output the entropy in the corresponding unit.
Any solution with a relative or absolute error of at most 10-8 will be accepted.
Sample Input
3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10
Sample Output
1.500000000000
1.480810832465
1.000000000000
题意:给你N个数和一个字符串str。 若str为bit。则计算sigma( - log2a[i])(1 <= i <= N); str为nat时,计算sigma(- loga[i])(1 <= i <= N); str为dit时,计算sigma(- log10a[i])(1 <= i <= N)。
AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#define LL long long
#define INF 0x3f3f3f3f
#define MAXN 1000
#define MAXM 100000
using namespace std;
int main()
{
int t;
int N;
char str[10];
double a[110];
scanf("%d", &t);
while(t--)
{
scanf("%d%s", &N, str);
double sum = 0;
for(int i = 0; i < N; i++)
scanf("%lf", &a[i]), sum += a[i];
double ans = 0;
if(strcmp(str, "bit") == 0)
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log2(a[i] / sum) * (a[i] / sum);
}
}
else if(strcmp(str, "nat") == 0)
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log(a[i] / sum) * (a[i] / sum);
}
}
else
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log10(a[i] / sum) * (a[i] / sum);
}
}
printf("%.12lf\n", ans);
}
return 0;
}
zoj 3827 Information Entropy 【水题】的更多相关文章
- ZOJ 3827 Information Entropy 水题
Information Entropy Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/sh ...
- ZOJ 3827 Information Entropy 水
水 Information Entropy Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge Informati ...
- ZOJ 3827 Information Entropy (2014牡丹江区域赛)
题目链接:ZOJ 3827 Information Entropy 依据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <strin ...
- 2014 牡丹江现场赛 i题 (zoj 3827 Information Entropy)
I - Information Entropy Time Limit:2000MS Memory Limit:65536KB 64bit IO Format:%lld & %l ...
- ZOJ 3827 Information Entropy(数学题 牡丹江现场赛)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5381 Information Theory is one of t ...
- ZOJ3827 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江I称号 Information Entropy 水的问题
Information Entropy Time Limit: 2 Seconds Memory Limit: 131072 KB Special Judge Informatio ...
- [ACM] ZOJ 3819 Average Score (水题)
Average Score Time Limit: 2 Seconds Memory Limit: 65536 KB Bob is a freshman in Marjar Universi ...
- ZOJ 2679 Old Bill ||ZOJ 2952 Find All M^N Please 两题水题
2679:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1679 2952:http://acm.zju.edu.cn/onli ...
- 2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy
Information Entropy Time Limit: 2 Seconds Memory Limit: 65536 KB Special Judge Information ...
随机推荐
- codeforces-574B
题目连接:http://codeforces.com/contest/574/problem/B B. Bear and Three Musketeers time limit per test 2 ...
- 华农oj Problem K: 负2进制【有技巧构造/待补】
Problem K: 负2进制 Time Limit: 2 Sec Memory Limit: 128 MB Submit: 51 Solved: 6 [Submit][Status][Web Boa ...
- URl 传参时+号变成空格
前端用base64加密后的数据,传递到后台时发现一个问题: 比如 韩飞 这个名字,base64加密后的字符串为 6Z+p6aOe 但是后端接受到参数为: 6Z p6aOe +号变成了空格,导致后台解密 ...
- AppScan入门工作原理详解
AppScan,即 AppScan standard edition.其安装在 Windows 操作系统上,可以对网站等 Web 应用进行自动化的应用安全扫描和测试. Rational AppScan ...
- (寒假集训) Piggyback(最短路)
Piggyback 时间限制: 1 Sec 内存限制: 64 MB提交: 3 解决: 3[提交][状态][讨论版] 题目描述 Bessie and her sister Elsie graze i ...
- ELK之收集日志到mysql数据库
写入数据库的目的是持久化保存重要数据,比如状态码.客户端浏览器版本等,用于后期按月做数据统计等. 环境准备 linux-elk1:10.0.0.22,Kibana ES Logstash Nginx ...
- [BZOJ 1800] 飞行棋
Link: BZOJ 1800 传送门 Solution: $O(n^4)$…… Code: #include <bits/stdc++.h> using namespace std; ] ...
- Apache压力(并发)测试工具ab的使用教程收集
说明:用ab的好处,在处理多并发的情况下不用自己写线程模拟.其实这个世界除了LoadRunner之外还是有很多方案可以选择的. 官网: http://httpd.apache.org/(Apache服 ...
- 学习一些和redux一样作用的mobx知识
两个组件:mobx和mobx-react 英文文档:https://mobx.js.org/refguide/object.html 中文文档:https://cn.mobx.js.org/ 样例:h ...
- 深入理解dataset及其用法
DataSet是ADO.NET的中心概念.可以把DataSet当成内存中的数据库,DataSet是不依赖于数据库的独立数据集合.所谓独立, 就是说,即使断开数据链路,或者关闭数据库,DataSet依然 ...