Information Entropy


Time Limit: 2 Seconds     
Memory Limit: 65536 KB      Special Judge


Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information.
The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish
from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variableX with possible values
{x1, x2, ..., xn} and probability mass functionP(X) as:

rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

rev=2.5.3" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:14px; width:15px; margin-right:-0.02em">

rev=2.5.3" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:14px; width:6px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

rev=2.5.3" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:9px; width:6px; margin-right:0.07em">

rev=2.5.3" alt="" style="height:14px; width:6px; margin-right:0.01em">

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" width="6" height="21" alt="" style="height:21px; width:6px; vertical-align:-5px; margin-right:0.09em">

Where b is the base of the logarithm used. Common values of b are 2, Euler's numbere, and 10. The unit of entropy is
bit for b = 2, nat for b = e, and
dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

rev=2.5.3" alt="" style="height:13px; width:10px; vertical-align:-4px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:14px; width:9px; margin-right:0.04em">

rev=2.5.3" width="15" height="5" alt="" style="height:5px; width:15px; vertical-align:3px; margin-right:0.05em">

rev=2.5.3" width="6" height="14" alt="" style="height:14px; width:6px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:9px; width:7px; margin-right:0.04em">

rev=2.5.3" alt="" style="height:13px; width:10px; vertical-align:-4px; margin-right:0.01em">

rev=2.5.3" alt="" style="height:1px; width:1px; margin-right:0.24em">

rev=2.5.3" alt="" style="height:9px; width:6px; margin-right:0em">

rev=2.5.3" width="7" height="21" alt="" style="height:21px; width:7px; vertical-align:-5px; margin-right:0.05em">

rev=2.5.3" alt="" style="height:13px; width:11px; vertical-align:-4px; margin-left:-0.03em; margin-right:0em">

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer
T
indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a stringS. The string
S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1,P2, ..,
PN. Pi means the probability of thei-th value in percentage and the sum of
Pi will be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000
题意:给你N个数和一个字符串str。

若str为bit。则计算sigma( - log2a[i])(1 <= i <= N);            str为nat时,计算sigma(- loga[i])(1 <= i <= N);           str为dit时,计算sigma(- log10a[i])(1 <= i <= N)。


AC代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <vector>
#include <queue>
#include <stack>
#include <algorithm>
#define LL long long
#define INF 0x3f3f3f3f
#define MAXN 1000
#define MAXM 100000
using namespace std;
int main()
{
int t;
int N;
char str[10];
double a[110];
scanf("%d", &t);
while(t--)
{
scanf("%d%s", &N, str);
double sum = 0;
for(int i = 0; i < N; i++)
scanf("%lf", &a[i]), sum += a[i];
double ans = 0;
if(strcmp(str, "bit") == 0)
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log2(a[i] / sum) * (a[i] / sum);
}
}
else if(strcmp(str, "nat") == 0)
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log(a[i] / sum) * (a[i] / sum);
}
}
else
{
for(int i = 0; i < N; i++)
{
if(a[i] == 0) continue;
ans += -log10(a[i] / sum) * (a[i] / sum);
}
}
printf("%.12lf\n", ans);
}
return 0;
}

zoj 3827 Information Entropy 【水题】的更多相关文章

  1. ZOJ 3827 Information Entropy 水题

    Information Entropy Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/sh ...

  2. ZOJ 3827 Information Entropy 水

    水 Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Informati ...

  3. ZOJ 3827 Information Entropy (2014牡丹江区域赛)

    题目链接:ZOJ 3827 Information Entropy 依据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <strin ...

  4. 2014 牡丹江现场赛 i题 (zoj 3827 Information Entropy)

    I - Information Entropy Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %l ...

  5. ZOJ 3827 Information Entropy(数学题 牡丹江现场赛)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5381 Information Theory is one of t ...

  6. ZOJ3827 ACM-ICPC 2014 亚洲区域赛的比赛现场牡丹江I称号 Information Entropy 水的问题

    Information Entropy Time Limit: 2 Seconds      Memory Limit: 131072 KB      Special Judge Informatio ...

  7. [ACM] ZOJ 3819 Average Score (水题)

    Average Score Time Limit: 2 Seconds      Memory Limit: 65536 KB Bob is a freshman in Marjar Universi ...

  8. ZOJ 2679 Old Bill ||ZOJ 2952 Find All M^N Please 两题水题

    2679:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1679 2952:http://acm.zju.edu.cn/onli ...

  9. 2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy

    Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information ...

随机推荐

  1. 华农oj Problem L: CreatorX背英语【STL】

    Problem L: CreatorX背英语 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 53 Solved: 36 [Submit][Status][ ...

  2. Linq 连接运算符:Concat,Union

    //Concat()方法附加两个相同类型的序列,并返回一个新序列(集合)IList<string> strList = new List<string>() { "O ...

  3. 【bzoj2393】【Cirno的完美算数教室】容斥原理的剪枝应用

    (上不了p站我要死了,侵权度娘背锅) 在用容斥定理时,常常会用到dfs的形式,如果枚举完所有的情况可能会超时,其剪枝的优化很是重要. Description ~Cirno发现了一种baka数,这种数呢 ...

  4. DQL数据查询语言——连接查询

    --内连接 两种写法 等值连接select r.*,b.bummc from t_hq_ryxx r, t_hq_bm b where r.bumbm = b.bumbm select r.*,b.b ...

  5. .Net中的不可变集合(Immutable Collection)简介

    今天发现MS在Nuget上发布了一个Immutable Collection的程序集,提供了对不可变对象的集合的支持. 简单的看了一下,貌似支持的还比较全: ImmutableArray<T&g ...

  6. 50个最常用的UNIX/Linux命令

    转自http://get.jobdeer.com/493.get 1. tar command examples Create a new tar archive. $ tar cvf archive ...

  7. [sharepoint]文档库,文件夹授权

    写在前面 在项目中用到了文档库授权的方法,这里将查询到的方式总结一下. 涉及到的方法 在逻辑中用到的方法. /// <summary> /// 获取sharepoint站点角色定义 res ...

  8. kubernetes--pod的生命周期管理

    下文基于kubernetes 1.5.2版本编写 lifecycle 概念 创建资源对象时,可以使用lifecycle来管理容器在运行前和关闭前的一些动作. lifecycle有两种回调函数: Pos ...

  9. Hive错误记录

    创建表报错 Error: Error while processing statement: FAILED: Execution Error, return code 1 from org.apach ...

  10. redis打开非英文存储显示问题

    使用jedis 在redis中如果存储非英文的值,入 中文,印地语,马拉蒂语,泰米尔语等.在执行get 或者 hget的时候查询出来的数据会以16进制显示.如何显示原有的值 在redis启动的时候加上 ...