传送门

众所周知lxl是个毒瘤,Ynoi道道都是神仙题

用蒲公英那个分块的方法做结果两天没卡过去→_→

首先我们分块,预处理块与块之间的答案,然后每次询问的时候拆成整块和两边剩下的元素

整块的答案很简单,那么只有两边剩下的元素有可能更新答案

我们对于每一个元素用\(vector\)记录所有的出现位置,设\(dep_i\)为位置为\(i\)的元素在\(vector\)中的位置,那么如果\(a_i\)在这段区间中的出现次数超过\(res\),那么\(vector\)中第\(i+res\)个元素就要小于等于\(r\)

不难发现\(res\)的改变次数小于\(2S\),其中\(S\)为块的大小

然后就没有然后了

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
char sr[1<<21],z[20];int C=-1,Z=0;
inline void Ot(){fwrite(sr,1,C+1,stdout),C=-1;}
void print(R int x){
if(C>1<<20)Ot();if(x<0)sr[++C]='-',x=-x;
while(z[++Z]=x%10+48,x/=10);
while(sr[++C]=z[Z],--Z);sr[++C]='\n';
}
const int N=5e5+5,M=1005;
int ans[M][M],a[N],b[N],cnt[N],rt[N],vis[N],sz[N],dep[N],nxt[N];
vector<int>pos[N];
int n,m,q,lastans=0,s,l,r;
void init(){
fp(i,1,rt[n]){
int bg=s*(i-1)+1,res=0;
fp(j,bg,n){
cmax(res,++cnt[a[j]]);
ans[i][rt[j]]=res;
}
memset(cnt,0,sizeof(cnt));
}
}
int query(){
if(r-l+1<=(s<<2)){
int res=0;
fp(i,l,r)cmax(res,++cnt[a[i]]);
fp(i,l,r)cnt[a[i]]=0;
return res;
}
int ll=rt[l]+1,rr=rt[r]-1;
int LL=(ll-1)*s+1,RR=rr*s;
int res=ans[ll][rr];
fp(i,l,LL-1)
while(dep[i]+res<sz[a[i]]&&pos[a[i]][dep[i]+res]<=r)++res;
fp(i,RR+1,r)
while(dep[i]-res>=0&&pos[a[i]][dep[i]-res]>=l)++res;
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),q=read(),s=sqrt(n)-1;
fp(i,1,n)a[i]=b[i]=read(),rt[i]=(i-1)/s+1;
sort(b+1,b+1+n),m=unique(b+1,b+1+n)-b-1;
dep[0]=-1;
fp(i,1,n){
a[i]=lower_bound(b+1,b+1+m,a[i])-b,pos[a[i]].push_back(i);
dep[i]=dep[nxt[a[i]]]+1,nxt[a[i]]=i;
}
fp(i,1,m)sz[i]=pos[i].size();
init();
while(q--){
l=read()^lastans,r=read()^lastans;
print(lastans=query());
}
Ot();
return 0;
}

洛谷P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III(分块)的更多相关文章

  1. [洛谷P5048][Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意:有$n(n\leqslant5\times10^5)$个数,$m(m\leqslant5\times10^5)$个询问,每个询问问区间$[l,r]$中众数的出现次数 题解:分块,设块大小为$ ...

  2. 洛谷 P5048 - [Ynoi2019 模拟赛] Yuno loves sqrt technology III(分块)

    题面传送门 qwq 感觉跟很多年前做过的一道题思路差不多罢,结果我竟然没想起那道题?!!所以说我 wtcl/wq 首先将 \(a_i\) 离散化. 如果允许离线那显然一遍莫队就能解决,复杂度 \(n\ ...

  3. Luogu P5048 [Ynoi2019模拟赛]Yuno loves sqrt technology III 分块

    这才是真正的$N\sqrt{N}$吧$qwq$ 记录每个数$vl$出现的位置$s[vl]$,和每个数$a[i]=vl$是第几个$vl$,记为$P[i]$,然后预处理出块$[i,j]$区间的答案$f[i ...

  4. 洛谷 P5046 [Ynoi2019 模拟赛] Yuno loves sqrt technology I(分块+卡常)

    洛谷题面传送门 zszz,lxl 出的 DS 都是卡常题( 首先由于此题强制在线,因此考虑分块,我们那么待查询区间 \([l,r]\) 可以很自然地被分为三个部分: 左散块 中间的整块 右散块 那么这 ...

  5. P5048 [[Ynoi2019模拟赛]Yuno loves sqrt technology III]

    为什么我感觉这题难度虚高啊-- 区间众数的出现次数- 计算器算一下 \(\sqrt 500000 = 708\) 然后我们发现这题的突破口? 考虑分块出来[L,R]块的众数出现个数 用 \(\text ...

  6. [Luogu5048] [Ynoi2019模拟赛]Yuno loves sqrt technology III[分块]

    题意 长为 \(n\) 的序列,询问区间众数,强制在线. \(n\leq 5\times 10^5\). 分析 考虑分块,暴力统计出整块到整块之间的众数次数. 然后答案还可能出现在两边的两个独立的块中 ...

  7. [luogu5048] [Ynoi2019模拟赛] Yuno loves sqrt technology III

    题目链接 洛谷. Solution 思路同[BZOJ2724] [Violet 6]蒲公英,只不过由于lxl过于毒瘤,我们有一些更巧妙的操作. 首先还是预处理\(f[l][r]\)表示\(l\sim ...

  8. [Ynoi2019模拟赛]Yuno loves sqrt technology III

    题目大意: 给你一个长为n的序列a,m次询问,每次查询一个区间的众数的出现次数,强制在线. 解题思路: 出题人题解 众所周知lxl是个毒瘤,Ynoi道道都是神仙题 首先得离散化. 分块后,预处理Fi, ...

  9. [Ynoi2019模拟赛]Yuno loves sqrt technology I

    题目描述 给你一个长为n的排列,m次询问,每次查询一个区间的逆序对数,强制在线. 题解 MD不卡了..TMD一点都卡不动. 强制在线的话也没啥好一点的方法,只能分块预处理了. 对于每个块,我们设lef ...

随机推荐

  1. C#winform拖拽实现获得文件路径

    1.关键知识点说明: 通过DragEnter事件获得被拖入窗口的“信息”(可以是若干文件,一些文字等等),在DragDrop事件中对“信息”进行解析.窗体的AllowDrop属性必须设置成true;且 ...

  2. window操作常识

  3. php如何判断电脑访问还是手机访问?

    手机上网用户数量越来越大,如今各网站都推出了手机网站,电脑用户访问时直接访问电脑版网页,当用户通过手机访问网站时则跳自动跳转到手机版网页,下面给大家分享一段php中判断电脑访问还是手机访问的代码: & ...

  4. luoguP1941福赖皮波德

    #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #inc ...

  5. bzoj 3752: Hack 预处理+暴力dfs

    题目大意: 定义字符串的hash值\(h = \sum_{i=0}^{n-1}p^{n-i-1}s_i\) 现在给定K个长度不超过L的字符串S,对于每个字符串S,求字典序最小长度不超过L的字符串T使得 ...

  6. vue2.0中的$router 和 $route的区别

    1.router是VueRouter的一个对象,通过Vue.use(VueRouter)和VueRouter构造函数得到一个router的实例对象,这个对象中是一个全局的对象,他包含了所有的路由包含了 ...

  7. 苹果公司CEO乔布斯在斯坦福大学毕业典礼上的演讲

    苹果公司CEO乔布斯在斯坦福大学毕业典礼上的演讲 摘要:这是苹果公司CEO乔布斯2005年在斯坦福大学毕业典礼上的演讲,大学途中退学,创业,被解雇,东山再起,死亡威胁,这些他都一一经历了.经营自己与众 ...

  8. Oracle RAC TAF 无缝failover

    理论背景: TAF( Transparent Application Failover ) allows oracle clients to reconnect to a surviving inst ...

  9. Nmon工具的使用以及通过nmon_analyse生成分析报表

    在我们监控我们的操作系统的时候如果可以把各个硬件的监控信息生成形象化的分析报表图对于我们来说是件太好的事情了,而通过ibm的nom和nmon_analyser两者的结合完全可以实现我们的要求.首先对n ...

  10. 在Altium Designer 2009下如何添加Logo图

    最近用Altium Designer 2013(14.2)绘制PCB,之后想在板子上放置一个LOGO图.要是用Altium Designer10以前的版本,过程也很简单,可在用Altium Desig ...