题意:

  给你一棵树,n个节点,每条边有长度。

  然后有q组询问(u,k),每次问你:从节点u出发,走到某个节点的距离mod k的最大值。

题解:

  对于无根树上的dp,一般都是先转成以1为根的有根树,然后分别从上到下和从下到上两遍dp。

  另一个技巧是:处理重复走边的情况时,可以让dp值表示达到某种状态的方案数。

  表示状态:

    dp[i][j][k] = max dis

    表示从i节点出发,走的距离mod k = j时的方案数

  找出答案:

    对于每次询问(u,k),答案为:满足dp[u][d][k]>0的最大的d值。

  如何转移:

    第一遍dfs:

      dp[i][(j+len)%k][k] = ∑ dp[son][j][k]

      只考虑从上往下的路径。

    第二遍dfs:

      dp[i][(j+len)%k][k] += dp[par][j][k]

      dp[i][(j+len)%k][k] -= old[i][((j-len)%k+k)%k][k]

      其中old[i][j][k]代表原来的dp,即只考虑从上往下时的dp。

      减去old是因为要将会导致重复走边的方案删去。

  边界条件:

    dp[i][0][k] = 1

    others = 0

  复杂度:

    Tree dp: O(n*k*k)

    Query: O(q*k)

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#include <vector>
#define MAX_N 3005
#define MAX_K 105 using namespace std; struct Edge
{
int dst;
int len;
Edge(int _dst,int _len)
{
dst=_dst;
len=_len;
}
Edge(){}
}; int n,q;
int dp[MAX_N][MAX_K][MAX_K];
int old[MAX_N][MAX_K][MAX_K];
vector<Edge> edge[MAX_N]; void read()
{
cin>>n;
int x,y,z;
for(int i=;i<n;i++)
{
cin>>x>>y>>z;
edge[x].push_back(Edge(y,z));
edge[y].push_back(Edge(x,z));
}
} void dfs1(int now,int p)
{
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p) dfs1(temp.dst,now);
}
for(int k=;k<=;k++)
{
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p)
{
for(int j=;j<k;j++)
{
dp[now][(j+temp.len)%k][k]+=dp[temp.dst][j][k];
}
}
}
}
} void dfs2(int now,int p,int l)
{
if(p!=-)
{
for(int k=;k<=;k++)
{
for(int j=;j<k;j++)
{
old[now][j][k]=dp[now][j][k];
}
}
for(int k=;k<=;k++)
{
for(int j=;j<k;j++)
{
dp[now][(j+l)%k][k]+=dp[p][j][k];
dp[now][(j+l)%k][k]-=old[now][((j-l)%k+k)%k][k];
}
}
}
for(int i=;i<edge[now].size();i++)
{
Edge temp=edge[now][i];
if(temp.dst!=p) dfs2(temp.dst,now,temp.len);
}
} void work()
{
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
for(int k=;k<=;k++)
{
dp[i][][k]=;
}
}
dfs1(,-);
dfs2(,-,);
cin>>q;
int u,k;
while(q--)
{
cin>>u>>k;
for(int d=k-;d>=;d--)
{
if(dp[u][d][k])
{
cout<<d<<endl;
break;
}
}
}
} int main()
{
read();
work();
}

TYOI Day1 travel:Tree dp【处理重复走边】的更多相关文章

  1. 96. Unique Binary Search Trees (Tree; DP)

    Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For examp ...

  2. HDU 4359——Easy Tree DP?——————【dp+组合计数】

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. HDU 4359 Easy Tree DP?

    Easy Tree DP? Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  4. poj 3230 Travel(dp)

    Description One traveler travels among cities. He has to pay for this while he can get some incomes. ...

  5. Codeforces 442D Adam and Tree dp (看题解)

    Adam and Tree 感觉非常巧妙的一题.. 如果对于一个已经建立完成的树, 那么我们可以用dp[ i ]表示染完 i 这棵子树, 并给从fa[ i ] -> i的条边也染色的最少颜色数. ...

  6. HDU5293(SummerTrainingDay13-B Tree DP + 树状数组 + dfs序)

    Tree chain problem Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Other ...

  7. HDU3534(SummerTrainingDay13-C tree dp)

    Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  8. BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)

    题目链接 BZOJ 洛谷 先求最短路树.考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离 ...

  9. Partial Tree(DP)

    Partial Tree http://acm.hdu.edu.cn/showproblem.php?pid=5534 Time Limit: / MS (Java/Others) Memory Li ...

随机推荐

  1. sersync简介与测试报告

    在分布式应用中会遇到一个问题,就是多个服务器间的文件如何能始终保持一致.一种经典的办法是将需要保持一致的文件存储在NFS上,这种方法虽然简单方便但却将本来多点的应用在文件存储上又变成了单点,这违背了分 ...

  2. shell常用操作积累

    1. 拼接字符串* #!/bin/sh write_log(){ local up_name=$ local num=${#string} ]; do up_name="$up_name*& ...

  3. Idea中优化Markdown Support显示效果

    转自:https://www.jianshu.com/p/d093c42a8c29 因为工作中为提高工作效率,我一般习惯于直接在`idea`中使用`markdow support`插件来进行相关文档的 ...

  4. linux 给用户修改权限

    #添加一个用户 useradd xiaoming #设置密码 passwd xiaoming 回程 //设置密码就行了 #把用户修改成root权限 vi /etc/passwd #找到xiaoming ...

  5. JSP的优势

    以下列出了使用JSP带来的其他好处: 与ASP相比:JSP有两大优势.首先,动态部分用Java编写,而不是VB或其他MS专用语言,所以更加强大与易用.第二点就是JSP易于移植到非MS平台上. 与纯 S ...

  6. saltstack之文件管理

    1.managed文件管理 /srv/salt/file/managed.sls /tmp/hyxc: file.managed: - source: - salt://files/hyxc - sa ...

  7. chattr

    chattr 功能:设置文件隐藏属性常用参数:+    增加某个特殊权限,其他原本存在的参数不动-     删除某个特殊权限,其他原本存在的参数不动=    设置一定,且仅有后面接的参数 i   文件 ...

  8. python 常用数据结构

    #coding=utf- #元组,不可变序列(,) a=(,,,) print(a) a=tuple([,,,])#第二种定义方式 print(a) print(a[]) print(a[:]) #可 ...

  9. unity shader 编辑器扩展类 ShaderGUI

    这应该unity5才出的新功能了,今天看文档时刚巧看到了,就来尝试了一下. 效果如图: shader 的编辑器扩展分为2种方法: 是通过UnityEditor下的ShaderGUI类来实现的,形式比较 ...

  10. 自定义circleindicator

    在此申明,并不是自己写的,只是为了方便日后使用 我使用的circleindicator是从大神的gitHub中弄来的, 使用如下: 一.在配置中导入 compile 'me.relex:circlei ...