一、数据

  • 获取数据
    import numpy as np
    from sklearn.datasets import fetch_mldata mnist = fetch_mldata("MNIST original")
  1. sklearn 的 datasets 中,一个特有的方法:fetch_mldata,使用此方法可以直接从一个官方网站中下载各种机器学习数据;
  2. 格式:datas = fetch_mldata("字符串");
  • 查看数据
    mnist
    # 输出:
    {'COL_NAMES': ['label', 'data'],
    'DESCR': 'mldata.org dataset: mnist-original',
    'data': array([[0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    ...,
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0],
    [0, 0, 0, ..., 0, 0, 0]], dtype=uint8),
    'target': array([0., 0., 0., ..., 9., 9., 9.])}
  1. mnist 是一个字典:'COL_NAMES'、'DESCR'、'data'、'target';
  2. 'DESCR':表示 MNIST 数据集所在的网站;
  • 处理数据
    X, y = mnist['data'], mnist['target']
    
    X.shape
    # 输出:(70000, 784) X_train = np.array(X[:60000], dtype=float)
    y_train = np.array(y[:60000], dtype=float)
    X_test = np.array(X[60000:], dtype=float)
    y_test = np.array(y[60000:], dtype=float)
  1. 此处没有进行数据归一化处理,因为现在的样本数据整体来说都表示图像中相应的一个像素点的亮度,也就是说,虽然整体数据没有进行归一化处理,但他们还在同一个尺度上,所以此数据集不需要进行归一化处理;
  2. 数据归一化的主要意义:当数据的尺度不同时,要把数据放在同一个尺度上;

二、算法

  • 使用 kNN 算法进行识别操作(数据不降维)
    from sklearn.neighbors import KNeighborsClassifier
    
    knn_clf = KNeighborsClassifier()
    %time knn_clf.fit(X_train, y_train)
    # 输出:44.9 s knn_clf.score(X_test, y_test)
    # 输出:0.9688
  1. kNN 算法中还需要进行调参:k、weight
  • 使用 kNN算法进行识别操作(PCA降维数据)
    from sklearn.decomposition import PCA
    
    # 只保留样本的 90% 的信息
    pca = PCA(0.9) pca.fit(X_train)
    X_train_reduction = pca.transform(X_train) X_train_reduction.shape
    # 输出:(60000, 87) knn_clf = KNeighborsClassifier()
    %time knn_clf.fit(X_train_reduction, y_train)
    # 输出:602 s X_test_reduction = pca.transform(X_test)
    %time knn_clf.score(X_test_reduction, y_test)
    # 输出:1 min 27 s 0.9728
  1. PCA(0.9):只保留样本的 90% 的信息,也就是能解释 90% 原是数据方差的前 n 个主成分;
  2. (60000, 87):将样本从 784 维,降低至 87 维,保留了样本 90% 的信息;
  • 分析:数据使用 PCA 降维前后的效果
  1. 现象:识别准确度提高了,预测时间缩短了;
  2. 使用 PCA 将数据降维后的优点:识别准确度提高了,预测时间缩短了,减小了数据和存储空间;
  3. 疑问:为什么 PCA 的过程中丢失了 10% 的信息,识别准确度反而提高了?
  4. 答疑:实际上 PCA 这个过程中,不仅仅对原始数据进行了降维,更有可能在降维的过程中将原有的数据所包含的噪音消除了,使得数据集中更好的特征,以至于识别准确率得到提升;

机器学习:PCA(实例:MNIST数据集)的更多相关文章

  1. 机器学习与Tensorflow(3)—— 机器学习及MNIST数据集分类优化

    一.二次代价函数 1. 形式: 其中,C为代价函数,X表示样本,Y表示实际值,a表示输出值,n为样本总数 2. 利用梯度下降法调整权值参数大小,推导过程如下图所示: 根据结果可得,权重w和偏置b的梯度 ...

  2. 机器学习-MNIST数据集使用二分类

    一.二分类训练MNIST数据集练习 %matplotlib inlineimport matplotlibimport numpy as npimport matplotlib.pyplot as p ...

  3. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  4. 【转载】用Scikit-Learn构建K-近邻算法,分类MNIST数据集

    原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本 ...

  5. Tensorflow MNIST 数据集测试代码入门

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitH ...

  6. Tensorflow MNIST 数据集測试代码入门

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 測试代码已上传至GitH ...

  7. MNIST 数据集介绍

    在学习机器学习的时候,首要的任务的就是准备一份通用的数据集,方便与其他的算法进行比较. MNIST数据集是一个手写数字数据集,每一张图片都是0到9中的单个数字,比如下面几个:     MNIST数据库 ...

  8. mnist 数据集的识别源码解析

    在基本跑完识别代码后,再来谈一谈自己对代码的理解: 1      前向传播过程文件(mnist_forward.py) 第一个函数get_weight(shape, regularizer); 定义了 ...

  9. Python读取MNIST数据集

    MNIST数据集获取 MNIST数据集是入门机器学习/模式识别的最经典数据集之一.最早于1998年Yan Lecun在论文: Gradient-based learning applied to do ...

随机推荐

  1. [Android]开源中国源码分析之二---DrawerLayout

    从启动界面到主界面之后的效果如图所示,采用的是v4包下的DrawerLayout, activity_main.xml文件如下: <!-- A DrawerLayout is intended ...

  2. 【P2325】王室联邦(树的遍历+贪心)

    在肖明 #神#的推荐下,我尝试了这个题,一开始想的是暴力枚举所有的点,然后bfs层数,试着和肖明 #神#说了这种方法之后, #神#轻蔑的一笑,说这不就是一个贪心么,你只需要先建树,然后从底下向上遍历, ...

  3. js获取select标签选中的值[转]

    var obj = document.getElementByIdx_x(”testSelect”); //定位id var index = obj.selectedIndex; // 选中索引 va ...

  4. ggplot笔记001——ggplot2安装

         R3.2.2版安装ggplot2      今天安装ggplot2,开始用的是R3.2.1版本,但是一直报错.后面换了一个最新的R3.2.2,但安装时还是一样报错,原因是munsell这个包 ...

  5. 求两个有序序列合并成新有序序列的中位数,求第k小数

    此算法涉及一个重要数学结论:如果A[k/2-1]<B[k/2-1],那么A[0]~A[k/2-1]一定在第k小的数的序列当中,可以用反证法证明. 算法思想如下: 1,假设A长度为m,B长度为n, ...

  6. 0.00-050613_head.s

    # head.s contains the -bit startup code. # Two L3 task multitasking. The code of tasks are in kernel ...

  7. 论文笔记 — MatchNet: Unifying Feature and Metric Learning for Patch-Based Matching

    论文:https://github.com/ei1994/my_reference_library/tree/master/papers 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于p ...

  8. 配置SSH密码登录

    在客户端生成公钥: ssh-keygen –t rsa 生成的公钥默认位置在~/.ssh/目录 把公钥上传到服务器端: scp id_rsa.pub root@ip地址:文件保存路径 cat id_r ...

  9. hdu 2490 队列优化dp

    http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    Memo ...

  10. java之 Timer 类的简单使用案例

              (如果您看到本文章务必看结尾!) 第一次用Timer类,记录一下个人理解. 场景:做苹果内容结果验证时,根据苹果支付凭证去苹果官方服务器验证是否支付成功.但因为苹果服务器比较慢,第 ...