Delivering Goods UVALive - 7986(最短路+最小路径覆盖)

题意:

给一张n个点m条边的有向带权图,给出C个关键点,问沿着最短路径走,从0最少需要出发多少次才能能覆盖这些关键点

\(1 <= n <= 1000\)

\(1 <= m <= 10^5\)

\(1 <= w <= 10^9\)

\(1 <= C <= 300\)

题解:

对所有的关键点建一个新图,对于任意两个关键点

若满足在原图中的最短路\(dis(0,u)+dis(u,v)=dis(0,v)\),

则\(u\)到\(v\)连一条有向边

显然新图一定是个\(DAG\),答案就等于新图的最小不相交路径覆盖

复习一下\(DAG\)上的最小不相交路径覆盖

对于一条路径,起点的入度为0,终点的出度为0,中间节点的出入度都为1

每一个点最多只能有1个后继,同时每一个点最多只能有1个前驱。

假如我们选择了一条边(u,v),也就等价于把前驱u和后继v匹配上了。这样前驱u和后继v就不能和其他节点匹配。

利用这个我们可以这样来构图:
将每一个点拆分成2个,分别表示它作为前驱节点和后继节点。将所有的前驱节点作为A部,所有后继节点作为B部,
若原图中存在一条边(u,v),则连接A部的u和B部的v
然后跑二分图匹配,答案就是点数-最大匹配数,也可以这样理解,我们要让结尾结点尽可能少,所以就要尽可能多的配对
一个点既可能做为前驱也可能做为后继,所以需要拆点 若求DAG上的可相交路径覆盖,求出图的floyd,转化为求不相交路径覆盖即可
#include<bits/stdc++.h>
#define LL long long
#define P pair<LL,int>
using namespace std;
const LL inf = 1e15;
const int N = 1e3 + 10;
vector<P> G[N];
vector<int> GG[N];
LL dis[N][N];
int n,m,C;
int a[N];
void dij(LL dis[],int s){
for(int i = 0;i < n;i++) dis[i] = inf;
dis[s] = 0;
priority_queue<P,vector<P>,greater<P> >q;
q.push(P(0,s));
while(!q.empty()){
P cur = q.top();q.pop();
int u = cur.second;
if(dis[u] < cur.first) continue;
for(auto now:G[u]){
int v = now.second;
if(now.first + dis[u] < dis[v]){
dis[v] = dis[u] + now.first;
q.push(P(dis[v],v));
}
}
}
}
int match[1000];
int vis[1000];
bool dfs(int u){
vis[u] = 1;
for(auto v:GG[u]){
int w = match[v];
if(w < 0 || !vis[w] && dfs(w)){
match[v] = u;
return true;
}
}
return false;
}
int Maxmatch(){
int ans = 0;
memset(match, -1, sizeof(match));
for(int i = 1;i <= C;i++){
memset(vis,0,sizeof(vis));
if(dfs(i)) ans++;
}
return ans;
}
int main(){ int cas = 1;
while(scanf("%d%d%d",&n,&m,&C)&&(n+m+C)){
for(int i = 1;i <= C;i++) scanf("%d",a + i);
for(int i = 0;i < n;i++) G[i].clear();
for(int i = 0;i < m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
G[u].push_back(P(w,v));
}
dij(dis[0],0);
for(int i = 1;i <= C;i++) GG[i].clear();
for(int i = 1;i <= C;i++){
int u = a[i];
dij(dis[u],u);
for(int j = 1;j <= C;j++){
if(a[j] != u && dis[0][u] + dis[u][a[j]] == dis[0][a[j]]) GG[i].push_back(j + C);
}
}
printf("Case %d: %d\n",cas++,C - Maxmatch());
}
return 0;
}

Delivering Goods UVALive - 7986(最短路+最小路径覆盖)的更多相关文章

  1. 训练指南 UVALive - 3126(DAG最小路径覆盖)

    layout: post title: 训练指南 UVALive - 3126(DAG最小路径覆盖) author: "luowentaoaa" catalog: true mat ...

  2. HDU 4606 Occupy Cities (计算几何+最短路+最小路径覆盖)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题目:给出n个城市需要去占领,有m条线段是障碍物, ...

  3. UVALive - 7368 Airports DAG图的最小路径覆盖

    题目链接: http://acm.hust.edu.cn/vjudge/problem/356788 Airports Time Limit: 3000MS 问题描述 An airline compa ...

  4. Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配

    /** 题目:Taxi Cab Scheme UVALive - 3126 最小路径覆盖解法(必须是DAG,有向无环图) = 结点数-最大匹配 链接:https://vjudge.net/proble ...

  5. HDU 4606 Occupy Cities (计算几何+最短路+二分+最小路径覆盖)

    Occupy Cities Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. UVaLive 3126 Taxi Cab Scheme (最小路径覆盖)

    题意:有 n 个客人,要从 si 到 ti,每个人有一个出发时间,现在让你安排最少和出租车去接,在接客人时至少要提前一分钟到达客人的出发地点. 析:把每个客人看成一个结点,然后如果用同一个出租车接的话 ...

  7. HDU 4606 Occupy Cities ★(线段相交+二分+Floyd+最小路径覆盖)

    题意 有n个城市,m个边界线,p名士兵.现在士兵要按一定顺序攻占城市,但从一个城市到另一个城市的过程中不能穿过边界线.士兵有一个容量为K的背包装粮食,士兵到达一个城市可以选择攻占城市或者只是路过,如果 ...

  8. poj 3216 (最小路径覆盖)

    题意:有n个地方,m个任务,每个任务给出地点,开始的时间和完成需要的时间,问最少派多少工人去可以完成所有的任务.给出任意两点直接到达需要的时间,-1代表不能到达. 思路:很明显的最小路径覆盖问题,刚开 ...

  9. LibreOJ 6003. 「网络流 24 题」魔术球 贪心或者最小路径覆盖

    6003. 「网络流 24 题」魔术球 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:Special Judge 上传者: 匿名 提交提交记录统计讨论测试数据 ...

随机推荐

  1. v-if

    vue中通过v-if,v-else-if,v-else的对应的Boolean值来操作元素在dom中是否移除. 这里就以单纯的true,false来模拟一下.注:标签属性去出来的值为string类型. ...

  2. ES6初识-解构赋值

    数组解构赋值 [a,b]=[1,2]; . 方法返回 function f(){ return [1,2] } let a,b; [a,b]=f();//a=1,b=2   function f1() ...

  3. 利用Selenium+java实现淘宝自动结算购物车商品(附源代码)

    转载请声明原文地址! 本次的主题是利用selenium+java实现结算购买购物车中的商品. 话不多说,本次首先要注意的是谷歌浏览器的版本,浏览器使用的驱动版本,selenium的jar包版本.   ...

  4. PHP使用redis(一)

    1,connect 描述:实例连接到一个Redis.参数:host: string,port: int返回值:BOOL 成功返回:TRUE;失败返回:FALSE <?php  $redis = ...

  5. <Docker学习>3. docker镜像命令使用

    镜像提供容器运行时所需要的程序,资源.配置文件等,是一个特殊的文件系统.是容器运行的基础.镜像是多层文件系统组成的,是一个分层存储的架构,在镜像的构建中,会一层层的构建,每一层构建完成就不会发生改变, ...

  6. C++基础 C++对类的管理——封装

    1.封装 两层含义: (1)把事物的属性和方法结合成个整体. (2)对类的属性和方法进行访问控制,对不信的进行信息屏蔽. 2.访问控制 控制分为 类的内部,类的外部. public 修饰的成员,可在内 ...

  7. Postgres主备切换

    主备查询 主备不会自动切换(即需要实现线上环境主数据库宕掉之后,从数据库能够自动切换为主数据库,需要借用第三方软件,例如heartbeat等) (1)如何查看是primary还是standby 方法1 ...

  8. strchr函数的用法

    原型: char *strchr(const char *s,char c); #include<string.h> 查找字符串s中首次出现字符c的位置,返回首次出现c的位置的指针,如果s ...

  9. POJ:2100-Graveyard Design(尺取)

    Graveyard Design Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 8504 Accepted: 2126 Cas ...

  10. Android面试收集录4 Fragment详解

    1.什么是Fragment? 你可以简单的理解为,Fragment是显示在Activity中的Activity. 它可以显示在Activity中,然后它也可以显示出一些内容. 因为它拥有自己的生命周期 ...