洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数
题目描述
称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\),有\(P_i>P_{\lfloor i/2 \rfloor}\). 计算\(1,2,...N\)的排列中有多少是\(Magic\)的,答案可能很大,只能输出模\(P\)以后的值
输入输出格式
输入格式:
输入文件的第一行包含两个整数\(n\)和\(p\),含义如上所述。
输出格式:
输出文件中仅包含一个整数,表示计算\(1,2,...,n-1,n\)的排列中, \(Magic\)排列的个数模\(p\)的值。
说明
\(100\%\)的数据中,\(1 \le N \le 10^6\), \(P \le 10^9\),\(p\)是一个质数。
想了好久啊QAQ
发现按照大小关系构成的一个树形结构就是二叉堆
节点编号为位置的小根堆
要给堆的每个节点不重复都放\(1\)~\(n\)的数,问方案数
到这里就比较容易了
\(dp_i=dp_{ls} \times dp_{rs} \times C_{siz_i-1}^{siz_i-1-siz_{ls}}\)
意义也比较明了了
这里要用lucas处理一下,因为\(p\)可能小于\(n\)
然而\(n|p\)时就比较麻烦了,要用扩展\(lucas\)(我太懒了没写,这样只能过洛谷但过不了bzoj
Code:
#include <cstdio>
#define ll long long
#define ls id<<1
#define rs id<<1|1
const int N=1e6+10;
ll n,p,u,fac[N],inv[N];
ll quickpow(ll d,ll k)
{
ll f=1;
while(k)
{
if(k&1) f=f*d%p;
d=d*d%p;
k>>=1;
}
return f;
}
void init()
{
u=(p<n?p:n);
inv[0]=fac[0]=1;
for(ll i=1;i<=u;i++)
fac[i]=fac[i-1]*i%p;
inv[u]=quickpow(fac[u],p-2);
for(ll i=u-1;i;i--)
inv[i]=inv[i+1]*(i+1)%p;
}
ll lucas(ll a,ll b)
{
if(a<b) return 0;
if(a<=u) return fac[a]*inv[b]%p*inv[a-b]%p;
return lucas(a/p,b/p)*lucas(a%p,b%p)%p;
}
ll siz[N<<2];
ll dfs(int id)
{
if(id>n) return 1ll;
siz[id]=1;
ll ans=dfs(ls)*dfs(rs)%p;
siz[id]+=siz[ls]+siz[rs];
return ans*lucas(siz[id]-1,siz[id]-1-siz[ls])%p;
}
int main()
{
scanf("%lld%lld",&n,&p);
init();
printf("%lld\n",dfs(1));
return 0;
}
2018.9.23
洛谷 P2606 [ZJOI2010]排列计数 解题报告的更多相关文章
- ●洛谷P2606 [ZJOI2010]排列计数
题链: https://www.luogu.org/problemnew/show/P2606题解: 组合数(DP),Lucas定理 首先应该容易看出,这个排列其实是一个小顶堆. 然后我们可以考虑dp ...
- 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)
题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...
- 洛谷P2606 [ZJOI2010]排列计数
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数(数位dp)
题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...
- 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP
题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...
- 洛谷 P1144 最短路计数 解题报告
P1144 最短路计数 题目描述 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点1开始,到其他每个点的最短路有几条. 输入输出格式 输入格式: 第一行包含2个正 ...
- 洛谷 P2604 [ZJOI2010]网络扩容 解题报告
P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...
- P2606 [ZJOI2010]排列计数
P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
随机推荐
- Linux文件服务器实战(系统用户)
ftp匿名用户设置完成之后任何人都可以访问服务器端文件,目录,甚至可以修改删除文件和目录,,那如何存放私密文件并保证文件或者目录专属于拥有者呢,就需要使用vsftp系统用户来实现了. 1.在linux ...
- py2exe安装使用
一.简介 py2exe是一个将python脚本转换成windows上的可独立执行的可执行程序(*.exe)的工具,这样,你就可以不用装python而在windows系统上运行这个可执行程序. py2e ...
- Altium Designer使用5:AD18的DXP在什么地方?
1.在顶上的菜单栏右击
- [Codeforces86D]Powerful array(莫队算法)
题意:定义K[x]为元素x在区间[l,r]内出现的次数,那么它的贡献为K[x]*K[x]*x 给定一个序列,以及一些区间询问,求每个区间的贡献 算是莫队算法膜版题,不带修改的 Code #includ ...
- 遗传算法 | Java版GA_TSP(我的第一个Java程序)
嗯哼,第一次写博客,准确说是第一次通过文字的方式记录自己的工作,闲话少叙,技术汪的博客就该直奔技术主题(关于排版问题,会在不断写博客的过程中慢慢学习,先将就着用吧,重在技术嘛~~~). 遗传算法(Ge ...
- python基础之数据类型与变量patr2
一.元素分类 有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中. 即: ...
- Java基本数据类型总结二
Java 基本数据类型总结二 变量就是申请内存来存储值.也就是说,当创建变量的时候,需要在内存中申请空间. 内存管理系统根据变量的类型为变量分配存储空间,分配的空间只能用来储存该类型数据. 因此,通过 ...
- java文件基本操作
public static void main(String [] args) { try { /* * File类 */ /*String directory = "D:/Workspac ...
- Jmeter mysql性能测试
一:首先建立jdbc connection configuration,设置参数如图 1.variable name 参数名称,与后面的sample中设置的variable name一致.含义为:通过 ...
- scheduled定时任务cron表达式知识地址
https://www.cnblogs.com/javahr/p/8318728.html https://www.cnblogs.com/sunjie9606/archive/2012/03/15/ ...