【bzoj5015】[Snoi2017]礼物 矩阵乘法
题目描述
热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1~N,每个到来的朋友都会带给他一些礼物:。其中,第一个朋友会带给他 1 个,之后,每一个朋友到来以后,都会带给他之前所有人带来的礼物个数再加他的编号的 K 次方那么多个。所以,假设 K=2,前几位朋友带来的礼物个数分别是:1,5,15,37,83假设 K=3,前几位朋友带来的礼物个数分别是:1,9,37,111现在,好奇自己到底能收到第 N 个朋友多少礼物,因此拜托于你了。已知 N,K请输出第 N 个朋友送的礼物个数 mod1000000007。
输入
输出
样例输入
4 2
样例输出
37
题解
矩阵乘法
设前$i$项的和为$S_i$,那么根据定义有$a_n=S_{n-1}+n^k$,故有$S_n=S_{n-1}+a_n=2S_{n-1}+n^k$。
由于k不大,显然这个式子可以矩乘。
具体方法:维护矩阵$\begin{bmatrix}S_{n-1}&n^k&n^{k-1}&...&n^1&n^0\end{bmatrix}$,那么$S$的转移矩阵就是上面的式子,而$n^i$的转移矩阵就是二项式系数,即$(n+1)^i$的展开式。
于是矩阵乘法加速递推,最终的答案就是$S_n-S_{n-1}$。
时间复杂度$O(k^3\log n)$
#include <cstdio>
#include <cstring>
#include <algorithm>
#define mod 1000000007
using namespace std;
typedef long long ll;
int d;
struct data
{
ll v[12][12];
ll* operator[](int a) {return v[a];}
data() {memset(v , 0 , sizeof(v));}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i <= d + 1 ; i ++ )
for(j = 0 ; j <= d + 1 ; j ++ )
for(k = 0 ; k <= d + 1 ; k ++ )
ans[i][j] = (ans[i][j] + v[i][k] * a[k][j]) % mod;
return ans;
}
}A , P;
data pow(data x , ll y)
{
data ans;
int i;
for(i = 0 ; i <= d + 1 ; i ++ ) ans[i][i] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
int main()
{
ll n;
int i , j;
scanf("%lld%d" , &n , &d);
for(i = 1 ; i <= d + 1 ; i ++ ) A[0][i] = 1;
P[0][0] = 2 , P[1][0] = 1;
for(i = d + 1 ; i ; i -- )
{
P[d + 1][i] = 1;
for(j = d ; j >= i ; j -- ) P[j][i] = P[j + 1][i + 1] + P[j][i + 1];
}
A = A * pow(P , n - 1);
printf("%lld\n" , ((A * P)[0][0] - A[0][0] + mod) % mod);
return 0;
}
【bzoj5015】[Snoi2017]礼物 矩阵乘法的更多相关文章
- bzoj 5015 [Snoi2017]礼物 矩阵乘法
5015: [Snoi2017]礼物 Time Limit: 15 Sec Memory Limit: 512 MBSubmit: 163 Solved: 115[Submit][Status][ ...
- bzoj5015 [Snoi2017]礼物 矩阵快速幂+二项式展开
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=5015 题解 设 \(f_i\) 表示第 \(i\) 个朋友的礼物,\(s_i\) 表示从 \( ...
- [bzoj5015][Snoi2017]礼物
来自FallDream的博客,未经允许,请勿转载,谢谢. 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第一个朋友会带给他 1 个,之后,每一个朋 ...
- BZOJ_5015_[Snoi2017]礼物_矩阵乘法
BZOJ_5015_[Snoi2017]礼物_矩阵乘法 Description 热情好客的请森林中的朋友们吃饭,他的朋友被编号为 1-N,每个到来的朋友都会带给他一些礼物:.其中,第 一个朋友会带给他 ...
- SNOI2017 礼物
题解 设前\(n\)个人的礼物个数和为\(F_n\), 那么显然\[F_n = 2 \times F_{n-1} + i^k\] 考虑矩阵快速幂 棘手的问题是:\(i^k\)不是可以直接用矩阵乘法可以 ...
- *HDU2254 矩阵乘法
奥运 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...
- *HDU 1757 矩阵乘法
A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- CH Round #30 摆花[矩阵乘法]
摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...
- POJ3070 Fibonacci[矩阵乘法]
Fibonacci Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 13677 Accepted: 9697 Descri ...
随机推荐
- 2.初识CronTrigger
开发工具:Eclipse 代码下载链接:https://github.com/theIndoorTrain/QuartzDemo.git 前言: 在1.初始Quartz里面,我们介绍了quartz的一 ...
- 2、SpringBoot+Mybatis整合------一对一
开发工具:STS 代码下载链接:https://github.com/theIndoorTrain/SpringBoot_Mybatis01/tree/93398da60c647573645917b2 ...
- hdu_1573_X问题 (分段之中国剩余
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], …, X mod a[i] = b[i], … ...
- RPC框架基础概念理解以及使用初体验
RPC:Remote Procedure Call(远程服务调用) RPC是做什么的 通过RPC框架机器A某个进程可以通过网络调用机器B上的进程方法,就像在本地上调用一样. RPC可以基于HTTP或者 ...
- opencms研究笔记
最近公司一新产品,众多选型之后: 最后还是准备在用opencms 在opencms的基础上,进行二次开发: 有一起研究的没 欢迎交流:
- Python文件IO(普通文件读写)
## 打开一个文件 - fileobj = open(filename, mode) 其中: fileobj是open()返回的文件对象 filename是该文件的字符串名 mode是指明文件类型和操 ...
- Oracle_11g中解决被锁定的scott用户的方法
在安装完Oracle10g和创建完oracle数据库之后,想用数据库自带的用户scott登录,看看连接是否成功. 问题: 在cmd命令中,用“sqlplus scott/ tiger”登录时,老是提 ...
- java 二进制、位运算、和移位运算符(2013-07-30-bd 写的日志迁移
二进制是逢2进位的进位制,0.1是基本算符, 1字节=8位 比如 int a =1 ;int 占4个字节在计算机里表示为: java中的4个位运算,分别是“按位与&.按位或|.按位异或^,按位 ...
- Huffman Tree -- Huffman编码
#include <stdlib.h> #include <stdio.h> #include <string.h> typedef struct HuffmanT ...
- TouTiao开源项目 分析笔记18 视频详情页面
1.效果预览 1.1.需要做到的真实效果 1.2.触发的点击事件 在MediaArticleVideoViewBinder的每一个item点击事件中: VideoContentActivity.lau ...