题目描述

给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问点a的颜色

输入

第一行一个数T,表示数据组数
接下来每组数据的第一行三个数n,c,q表示结点个数,颜色数和操作数
接下来一行n-1个数描述2..n的父节点
接下来q行每行三个数a,l,c
若c为0,表示询问a的颜色
否则将距离a不超过l的a的子节点染成c

输出

设当前是第i个操作,y_i为本次询问的答案(若本次操作是一个修改则y_i为0),令z_i=i*y_i,请输出z_1+z_2+...+z_q模10^9+7

样例输入

1
4 3 7
1 2 2
3 0 0
2 1 3
3 0 0
1 0 2
2 0 0
4 1 1
4 0 0

样例输出

32


题解

KD-tree

“子树内”是dfs序限制,“距离不超过l”是深度限制。对满足两种限制的点的修改,可以将其看作平面上的点,修改相当于矩形修改,使用lazy标记+pushdown即可。

时间复杂度$O(n\sqrt n)$

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
int head[N] , to[N] , next[N] , cnt , deep[N] , pos[N] , last[N] , tot , d , root;
struct data
{
int p[2] , mx[2] , mn[2] , c[2] , w , tag;
bool operator<(const data &a)const {return p[d] == a.p[d] ? p[d ^ 1] < a.p[d ^ 1] : p[d] < a.p[d];}
}a[N];
inline void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void dfs(int x)
{
int i;
pos[x] = ++tot , a[x].p[0] = pos[x] , a[x].p[1] = deep[x];
for(i = head[x] ; i ; i = next[i])
deep[to[i]] = deep[x] + 1 , dfs(to[i]);
last[x] = tot;
}
inline void pushup(int x)
{
int l = a[x].c[0] , r = a[x].c[1];
a[x].mx[0] = max(a[x].p[0] , max(a[l].mx[0] , a[r].mx[0]));
a[x].mx[1] = max(a[x].p[1] , max(a[l].mx[1] , a[r].mx[1]));
a[x].mn[0] = min(a[x].p[0] , min(a[l].mn[0] , a[r].mn[0]));
a[x].mn[1] = min(a[x].p[1] , min(a[l].mn[1] , a[r].mn[1]));
}
int build(int l , int r , int now)
{
if(l > r) return 0;
int mid = (l + r) >> 1;
d = now , nth_element(a + l , a + mid , a + r + 1);
a[mid].w = 1 , a[mid].tag = 0;
a[mid].c[0] = build(l , mid - 1 , now ^ 1);
a[mid].c[1] = build(mid + 1 , r , now ^ 1);
pushup(mid);
return mid;
}
inline void pushdown(int x)
{
if(a[x].tag)
{
int l = a[x].c[0] , r = a[x].c[1];
a[l].w = a[l].tag = a[r].w = a[r].tag = a[x].tag;
a[x].tag = 0;
}
}
void update(int bx , int ex , int by , int ey , int v , int x)
{
if(!x || a[x].mx[0] < bx || a[x].mn[0] > ex || a[x].mx[1] < by || a[x].mn[1] > ey) return;
if(a[x].mn[0] >= bx && a[x].mx[0] <= ex && a[x].mn[1] >= by && a[x].mx[1] <= ey)
{
a[x].w = a[x].tag = v;
return;
}
pushdown(x);
if(a[x].p[0] >= bx && a[x].p[0] <= ex && a[x].p[1] >= by && a[x].p[1] <= ey) a[x].w = v;
update(bx , ex , by , ey , v , a[x].c[0]) , update(bx , ex , by , ey , v , a[x].c[1]);
}
int query(int px , int py , int x)
{
d ^= 1;
if(a[x].p[0] == px && a[x].p[1] == py) return a[x].w;
pushdown(x);
if(d)
{
if(py < a[x].p[1] || (py == a[x].p[1] && px < a[x].p[0])) return query(px , py , a[x].c[0]);
else return query(px , py , a[x].c[1]);
}
else
{
if(px < a[x].p[0] || (px == a[x].p[0] && py < a[x].p[1])) return query(px , py , a[x].c[0]);
else return query(px , py , a[x].c[1]);
}
}
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
memset(head , 0 , sizeof(head)) , cnt = 1;
a[0].mx[0] = a[0].mx[1] = -1 << 30 , a[0].mn[0] = a[0].mn[1] = 1 << 30;
int n , m , i , x , y , z , ans = 0;
scanf("%d%*d%d" , &n , &m);
for(i = 2 ; i <= n ; i ++ ) scanf("%d" , &x) , add(x , i);
dfs(1);
root = build(1 , n , 0);
for(i = 1 ; i <= m ; i ++ )
{
scanf("%d%d%d" , &x , &y , &z);
if(z) update(pos[x] , last[x] , deep[x] , deep[x] + y , z , root);
else d = 1 , ans = (ans + (long long)query(pos[x] , deep[x] , root) * i) % 1000000007;
}
printf("%d\n" , ans);
}
return 0;
}

【bzoj4154】[Ipsc2015]Generating Synergy KD-tree的更多相关文章

  1. 【BZOJ4154】[Ipsc2015]Generating Synergy KDtree

    [BZOJ4154][Ipsc2015]Generating Synergy Description 给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问 ...

  2. BZOJ4154:[Ipsc2015]Generating Synergy(K-D Tree)

    Description 给定一棵以1为根的有根树,初始所有节点颜色为1,每次将距离节点a不超过l的a的子节点染成c,或询问点a的颜色 Input 第一行一个数T,表示数据组数 接下来每组数据的第一行三 ...

  3. BZOJ4154:[IPSC2015]Generating Synergy

    浅谈\(K-D\) \(Tree\):https://www.cnblogs.com/AKMer/p/10387266.html 题目传送门:https://lydsy.com/JudgeOnline ...

  4. 【bzoj 4154】[Ipsc2015]Generating Synergy

    题目 大概已经掌握熟练码出\(kdt\)的技能了 发现距离子树根节点\(x\)不超过\(l\)的点可以用两种方式来限制,首先\(dfs\)序在\([dfn_x,dfn_x+sum_x)\)中,深度自然 ...

  5. 【LeetCode】Minimum Depth of Binary Tree 二叉树的最小深度 java

    [LeetCode]Minimum Depth of Binary Tree Given a binary tree, find its minimum depth. The minimum dept ...

  6. 【BZOJ2843】极地旅行社(Link-Cut Tree)

    [BZOJ2843]极地旅行社(Link-Cut Tree) 题面 BZOJ 题解 \(LCT\)模板题呀 没什么好说的了.. #include<iostream> #include< ...

  7. 【BZOJ4530】大融合(Link-Cut Tree)

    [BZOJ4530]大融合(Link-Cut Tree) 题面 讨厌权限题!!! Loj链接 题目描述 小强要在 N个孤立的星球上建立起一套通信系统.这套通信系统就是连接 N个点的一个树.这个树的边是 ...

  8. 【BZOJ1969】航线规划(Link-Cut Tree)

    [BZOJ1969]航线规划(Link-Cut Tree) 题面 BZOJ 题解 删边操作 套路呀 离线读入倒过来做 变成加边操作 现在考虑怎么确定两点直接的关键路径条数 如果是一棵树,那么每条边都是 ...

  9. 【BZOJ4825】【HNOI2017】单旋(Link-Cut Tree)

    [BZOJ4825][HNOI2017]单旋(Link-Cut Tree) 题面 题面太长,懒得粘过来 题解 既然题目让你写Spaly 那就肯定不是正解 这道题目,让你求的是最大/最小值的深度 如果有 ...

随机推荐

  1. Map the Debris -freecodecamp算法题目

    Map the Debris 1.要求 返回一个数组,其内容是把原数组中对应元素的平均海拔转换成其对应的轨道周期. 原数组中会包含格式化的对象内容,像这样 {name: 'name', avgAlt: ...

  2. Vim---配置实用的.vimrc文件

    配置自己电脑的vim,配置一个根据个人习惯使用的.vimrc文件.我的有以下功能等,读者可以根据自己的 个人喜好去配置自己的vim. 1.自动插入文件头 ,新建C.C++源文件时自动插入表头:包括文件 ...

  3. springboot整合mybatis笔记

    1首先创建一个springboot项目 创建项目的文件结构以及jdk的版本 选择项目所需要的依赖 之后点击finish,完成创建 2以下是文件结构 看一下啊pom.xml; <?xml vers ...

  4. 用MySQL的optimizer_trace进行sql调优

    在我们调优MySQL的SQL时候,通常使用三种工具进行查看sql执行的效率,explain.profile.optimizer_trace.前两个经常被人使用,由于第三个难度较大,大家使用的较少,下面 ...

  5. 【转载】C语言itoa()函数和atoi()函数详解(整数转字符C实现)

    本文转自: C语言itoa()函数和atoi()函数详解(整数转字符C实现) 介绍 C语言提供了几个标准库函数,可以将任意类型(整型.长整型.浮点型等)的数字转换为字符串. int/float to ...

  6. Python容器--list, tuple, dict, set

    ## Python 中有四种用于存放数据的序列--list, tuple, dict, set ## list 列表 - 可以存放任意类型数据的有序序列 - 列表可以由零个或多个元素组成,元素之间用逗 ...

  7. python爬虫:利用正则表达式爬取豆瓣读书首页的book

    1.问题描述: 爬取豆瓣读书首页的图书的名称.链接.作者.出版日期,并将爬取的数据存储到Excel表格Douban_I.xlsx中 2.思路分析: 发送请求--获取数据--解析数据--存储数据 1.目 ...

  8. 15.5,centos下redis安全相关

      博文背景: 由于发现众多同学,在使用云服务器时,安装的redis3.0+版本都关闭了protected-mode,因而都遭遇了挖矿病毒的攻击,使得服务器99%的占用率!! 因此我们在使用redis ...

  9. python的高阶函数与匿名函数

    一.高阶函数的定义 高阶函数:就是把函数当成参数传递的一种函数,例如: def add(x,y,f): return f(x)+f(y) print(add(-8,11,abs) 结果:19 解释: ...

  10. 三层还是DDD,ORM还是Ado.Net,何去何从?

    我本想把这个问题放到博问去,前几次有去博问问过之类的问题,无奈大神们可能都不屑回答别人的低级问题.所以放到随笔里,一方面把自己对ORM.架构的一些看法写下来抛砖引玉,另一方面最主要的是想寻求大神们指指 ...