http://www.cnblogs.com/eyeszjwang/articles/2368087.html

MAP(Mean Average Precision):单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值。主集合的平均准确率(MAP)是每个主题的平均准确率的平均值。MAP 是反映系统在全部相关文档上性能的单值指标。系统检索出来的相关文档越靠前(rank 越高),MAP就可能越高。如果系统没有返回相关文档,则准确率默认为0。
例如:假设有两个主题,主题1有4个相关网页,主题2有5个相关网页。某系统对于主题1检索出4个相关网页,其rank分别为1, 2, 4, 7;对于主题2检索出3个相关网页,其rank分别为1,3,5。对于主题1,平均准确率为(1/1+2/2+3/4+4/7)/4=0.83。对于主题2,平均准确率为(1/1+2/3+3/5+0+0)/5=0.45。则MAP= (0.83+0.45)/2=0.64。”

NDCG(Normalized Discounted Cumulative Gain):计算相对复杂。对于排在结位置n处的NDCG的计算公式如下图所示:

在MAP中,四个文档和query要么相关,要么不相关,也就是相关度非0即1。NDCG中改进了下,相关度分成从0到r的r+1的等级(r可设定)。当取r=5时,等级设定如下图所示:

例如现在有一个query={abc},返回下图左列的Ranked List(URL),当假设用户的选择与排序结果无关(即每一级都等概率被选中),则生成的累计增益值如下图最右列所示:

考虑到一般情况下用户会优先点选排在前面的搜索结果,所以应该引入一个折算因子(discounting factor): log(2)/log(1+rank)。这时将获得DCG值(Discounted Cumulative Gain)如下如所示:

最后,为了使不同等级上的搜索结果的得分值容易比较,需要将DCG值归一化的到NDCG值。操作如下图所示,首先计算理想返回结果List的DCG值:

然后用DCG/MaxDCG就得到NDCG值,如下图所示:

MRR(Mean Reciprocal Rank):是把标准答案在被评价系统给出结果中的排序取倒数作为它的准确度,再对所有的问题取平均。相对简单,举个例子:有3个query如下图所示:

可计算这个系统的MRR值为:(1/3 + 1/2 + 1)/3 = 11/18=0.61。

IR的评价指标—MAP,NDCG,MRR的更多相关文章

  1. (转)Learning to Rank for IR的评价指标—MAP,NDCG,MRR

    转自:http://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是每篇 ...

  2. Learning to Rank for IR的评价指标—MAP,NDCG,MRR

    转自: https://www.cnblogs.com/eyeszjwang/articles/2368087.html MAP(Mean Average Precision):单个主题的平均准确率是 ...

  3. IR的评价指标-MAP,NDCG和MRR

    IR的评价指标-MAP,NDCG和MRR   MAP(Mean Average Precision): 单个主题的平均准确率是每篇相关文档检索出后的准确率的平均值.主集合的平均准确率(MAP)是每个主 ...

  4. IR的评价指标之MRR

    MRR(Mean Reciprocal Rank): 是一个国际上通用的对搜索算法进行评价的机制,即第一个结果匹配,分数为1,第二个匹配分数为0.5,第n个匹配分数为1/n,如果没有匹配的句子分数为0 ...

  5. 目标检测评价指标(mAP)

    常见指标 precision 预测出的所有目标中正确的比例 (true positives / true positives + false positives). recall 被正确定位识别的目标 ...

  6. 目标检测评价指标mAP 精准率和召回率

    首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. ...

  7. 推荐系统排序(Ranking)评价指标

      一.准确率(Precision)和召回率(Recall)  (令R(u)是根据用户在训练集上的行为给用户作出的推荐列表,而T(u)是用户在测试集上的行为列表.) 对用户u推荐N个物品(记为R(u) ...

  8. Datasets and Evaluation Metrics used in Recommendation System

    Movielens and Netflix remain the most-used datasets. Other datasets such as Amazon, Yelp and CiteUli ...

  9. [笔记]Learning to Rank算法介绍:RankNet,LambdaRank,LambdaMart

    之前的博客:http://www.cnblogs.com/bentuwuying/p/6681943.html中简单介绍了Learning to Rank的基本原理,也讲到了Learning to R ...

随机推荐

  1. php学习笔记5--php中的可变变量,可变函数及匿名函数

    可变变量指的是:将一个变量的值再次当做一个变量名从而得到另外一个变量的值.如:$name = 'dqrcsc';$myname = 'name'; //$myname的值碰巧是另一个变量的变量名ech ...

  2. SQL SERVER 2008 R2 错误代码 17000 - 17999

    错误 严重性 是否记录事件 说明(消息正文) 17000 10 否 用法: sp_autostats <table_name> [, {ON|OFF} [, <index_name& ...

  3. android 网络_网络图片查看器

    xml <?xml version="1.0"?> -<LinearLayout tools:context=".MainActivity" ...

  4. JAVA泛型? T K V E含义

    ? 表示不确定的java类型,类型是未知的. T  表示java类型. K V 分别代表java键值中的Key Value. E 代表Element,特性是枚举.

  5. 基于Httpfs访问HDFS的C++实现

    Httpfs是hadoop2.x中hdfs项目的内置应用,基于tomcat和jesery,对外提供完备HDFS操作的RESTful接口,无需安装客户端,可方便实现数据交互,如从windows访问存储在 ...

  6. Arduino CNC Shiled 和 DRV8825驱动板的注意事项

    首先说明硬件:1) Arduino CNC Shiled V2.6 2)DRV8825驱动板 3)光驱步进电机  4)Arduino  uno R3 下图是本次主角是Arduino CNC Shile ...

  7. Flex-box 学习

    .flex-cont{ /*定义为flexbox的“父元素”*/ display: -webkit-box; display: -webkit-flex; display: flex; /*子元素沿主 ...

  8. SQL Server Profiler监控执行语句

    SQL Server Profiler监控执行语句,这个功能主要用在实时的监控对数据库执行了什么操作,从而及时有效的跟踪系统的运行. 常规配置选项,名称.模板.保存到文件(可以复用). 事件选择,可以 ...

  9. Redis 一:安装篇

    .安装环境,虚拟机 + centos6. PS::前提已经安装了yum的情况下 第一步:安装 mkdir /usr/redis 新建redis目录 cd /usr/redis 进入目录 wget ht ...

  10. 简单实用的PHP验证码类

    一个简单实用的php验证码类,分享出来 ,供大家参考. 代码如下: <?php /** @ php 验证码类 @ http://www.jbxue.com */ Class code { var ...