n个点的无向带权图,求1->n的最短往返路径,不走重复边。

这里涉及到一个知识点:求无向图上s->t的最短路,其实就是费用流。

而求1->n最短往返路径呢?增加源点s,由s到1加弧,容量为2(往返两次),费用为0;而对于原图中的边<u, v>,分别由u到v,由v到u增加容量为1(往返不能走重边),费用为边权的弧。然后跑费用流得到的最小费用便是答案。如果最后求得的最大流小于2,则说明无解。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<fstream>
#include<sstream>
#include<bitset>
#include<vector>
#include<string>
#include<cstdio>
#include<cmath>
#include<stack>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define debug puts("**debug**")
#define LL long long
#define PB push_back
using namespace std; const int maxn = 111;
const int INF = 1e9;
int n, m, s, t, d[maxn], p[maxn], a[maxn], inq[maxn];
int flow, cost;
struct Edge
{
int from, to, cap, flow, cost;
};
vector<Edge> edges;
vector<int> G[maxn]; inline void init()
{
flow = cost = s = 0, t = n;
REP(i, t+1) G[i].clear(); edges.clear();
} void add(int from, int to, int cap, int cost)
{
edges.PB((Edge){from, to, cap, 0, cost});
edges.PB((Edge){to, from, 0, 0, -cost});
int nc = edges.size();
G[from].PB(nc-2);
G[to].PB(nc-1);
} bool spfa(int& flow, int& cost)
{
REP(i, t+1) d[i] = INF;
CLR(inq, 0);
d[s] = 0, inq[s] = 1, p[s] = 0, a[s] = INF;
queue<int> q; q.push(s);
while(!q.empty())
{
int u = q.front(); q.pop();
inq[u] = 0;
int nc = G[u].size();
REP(i, nc)
{
Edge& e = edges[G[u][i]];
if(e.cap > e.flow && d[e.to] > d[u] + e.cost)
{
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if(!inq[e.to]) q.push(e.to), inq[e.to] = 1;
}
}
}
if(d[t] == INF) return false;
flow += a[t], cost += d[t] * a[t];
int u = t;
while(u != s)
{
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
} int main()
{
while(scanf("%d", &n), n)
{
scanf("%d", &m);
init();
int a, b, c;
add(s, 1, 2, 0);
while(m--)
{
scanf("%d%d%d", &a, &b, &c);
add(a, b, 1, c);
add(b, a, 1, c);
}
while(spfa(flow, cost));
if(flow < 2) puts("Back to jail");
else printf("%d\n", cost);
}
return 0;
}

UVA 10806 Dijkstra, Dijkstra.(费用流)的更多相关文章

  1. HDU 6611 K Subsequence(Dijkstra优化费用流 模板)题解

    题意: 有\(n\)个数\(a_1\cdots a_n\),现要你给出\(k\)个不相交的非降子序列,使得和最大. 思路: 费用流建图,每个点拆点,费用为\(-a[i]\),然后和源点连边,和后面非降 ...

  2. 费用流 Dijkstra 原始对偶方法(primal-dual method)

    简单叙述用Dijkstra求费用流 Dijkstra不能求有负权边的最短路. 类似于Johnson算法,我们也可以设计一个势函数,以满足在与原图等价的新图中的边权非负. 但是这个算法并不能处理有负圈的 ...

  3. UVa 10806 Dijkstra,Dijkstra(最小费用最大流)

    裸的费用流.往返就相当于从起点走两条路到终点. 按题意建图,将距离设为费用,流量设为1.然后增加2个点,一个连向节点1,流量=2,费用=0;结点n连一条同样的弧,然后求解最小费用最大流.当且仅当最大流 ...

  4. uva 10806 Dijkstra, Dijkstra. (最小费最大流)

    uva 10806 Dijkstra, Dijkstra. 题目大意:你和你的伙伴想要越狱.你的伙伴先去探路,等你的伙伴到火车站后,他会打电话给你(电话是藏在蛋糕里带进来的),然后你就能够跑去火车站了 ...

  5. dijkstra 最小费用最大流

    前言:众所周知:spfa他死了 滑稽 dijkstra同样为最短路算法,为什么不能跑费用流qwq 好像是因为有负权边的缘故 但是如果我们如果使用某种玄学的将边权都拉回到正数的话 就可以跑了dijkst ...

  6. 【最小费用最大流模板】【Uva10806+Spring Team PK】Dijkstra, Dijkstra,

    题意:从1到n 再从n到1 不经过重复的边 ,(如果是点就是旅行商问题了),问最短路 建立一个超级源S S到1连一条费用为0,容量为2的边,求费用流即可 如果流<2 那么hehe 否则    输 ...

  7. UVa 2197 & 拆点分环费用流

    题意: 给你一个带权有向图,选择一些边组成许多没有公共边的环,使每个点都在k个环上,要求代价最小. SOL: 现在已经养成了这种习惯,偏题怪题都往网络流上想... 怎么做这题呢... 对我们看到每个点 ...

  8. UVa 1658 Admiral(最小费用最大流)

    拆点费用流 --------------------------------------------------------------------- #include<cstdio> # ...

  9. bzoj2879(动态加边费用流)

    参考题解:http://blog.csdn.net/yxuanwkeith/article/details/52254602 //开始跑费用流用的dijkstra,一直错,后来发现动态加边后我不会处理 ...

随机推荐

  1. Qt: 把内容写进字符串中与C++很相似(使用QTextStream包装QString)

    #include <iostream>#include <QChar>#include <QFile>#include <QTextStream>#in ...

  2. Android:控件布局(单帧布局)FrameLayout

    FrameLayout:所有控件位于左上角,并且直接覆盖前面的子元素. 在最上方显示的层加上: android:clickable="true" 可以避免点击上层触发底层. 实例: ...

  3. python调试 设置断点

    1在所需要调试的地方加入如下代码: import pdb    pdb.set_trace() 2调试代码常用命令: 实例请见参考文献: 1http://www.cnblogs.com/qi09/ar ...

  4. FPGA中latency与delay概念的区别

    2013-06-17 21:09:26 最近学习流水线以及状态机,总遇到注入加入寄存器可以分割组合逻辑,从而提高电路的运行频率的说法:还有流水线可以提高速度的说法,刚开始很是疑惑,觉得流水线的方法,输 ...

  5. 比nerdtree更好的文件浏览器:vimfiler

    通过:VimFilerExplorer来打开一个文件浏览器 h:收起 t:展开 -:close 回车:进入或展开 空格:收起

  6. spring + mybatis 注解式事务不回滚的原因分析 @Transactional

    在一个项目中发现spring的事务无法回滚. DEBUG: org.mybatis.spring.SqlSessionUtils - SqlSession [org.apache.ibatis.ses ...

  7. innodb master thread 工作原理

    参考 innodb参数汇总  InnoDB的Master Thread工作原理 innodb_max_dirty_pages_pct 默认值 show variables like 'innodb_m ...

  8. 5个难以置信的VS 2015预览版新特性

    Visual Studio 2015 Preview包含了很多强大的新特性,无论你是从事WEB应用程序开发,还是桌面应用程序开发,甚至是移动应用开发,VS 2015都将大大提高你的开发效率.有几个特性 ...

  9. PHP如何大幅度提升运行效率? -- 把它编译成机器码!

      书接上回   今天讨论如何大幅度提升PHP的运行效率. 在这,我们不纠结神马单双引号.全局变量.OO.require_once.错误抑制.... 在这,我们也不讨论APC.opcache.XCac ...

  10. windows ping RPi 2B

    /************************************************************************* * windows ping RPi 2B * 声 ...