基于Pre-Train的CNN模型的图像分类实验

 MatConvNet工具包提供了好几个在imageNet数据库上训练好的CNN模型,可以利用这个训练好的模型提取图像的特征。本文就利用其中的 “imagenet-caffe-ref”的模型,提取图像特征(softmax前一层的输出,4096维),在几个常用的图像分类的数据库中进行了相应的分类实验。这实验的过程中,有对图片进行左右翻转用于增加训练数据。下面结果的表格中:Original原始结果,Flip增加翻转后的结果。

需要用到的toolbox及模型:
liblinear: 用于训练SVM, 实验中采用linear SVM 以及 c=1
 
数据库及相应的实验结果:
1. Caltech-101以及Caltech-256
    随机的重复进行10次实验,取分类的结果的平均值,Training Images是每一个类别使用的训练图片数目。
 
Caltech-101
 Training Images  5  10  15  20  25  30
 Original  76.73 ± 0.79  82.06 ± 0.36  84.10 ± 0.69  85.32 ± 0.50  86.26 ± 0.44 86.96 ± 0.89 
 Flip 76.60 ± 0.49   82.09 ± 0.45  83.91 ± 0.49  85.46 ± 0.38  86.11 ± 0.34  86.98 ± 0.93
 
Caltech-256
 Training Images  15  30  45  60
 Original  63.76 ± 0.41  67.81 ± 0.56  69.71 ± 0.48  70.84 ± 0.69
 Flip  63.72 ± 0.51  67.74 ± 0.54  69.65 ± 0.76  70.75 ± 0.59
 
2. Oxford flowers-102
  flowers-102是一个用于花卉精细分类的数据库,数据库提供了Train,Validation,Test的集合。在实验过程中,直接使用(Train+Validation)进行训练,Test进行测试。
 Original  84.50
 Flip  85.14
 
3. Scene-15
    Scene-15是一个包含15类场景的数据,实验采用的每一场景取100张图片做训练,其余的做测试。重复进行10次实验
 Original  86.87 ± 0.75
 Flip  87.00 ± 0.41
 
4. UC Merced Land Use Dataset
   UC Merced Land Use Dataset是一个包含21类场景遥感卫星图像分类数据库(每个类别100张图片),实验采用的80训练,20测试,重复10次。
 Original  94.90 ± 0.95
 Flip  95.14 ± 1.05
 
5. Flickr Material
  Flickr Materia是一个关于材料的数据库,包含10种不同的材料(每种100张图片),实验采用50张做训练,剩下的50张做测试,重复10次实验。数据库还提供每一张图片的Mask,本实验没有考虑Mask
 Original  64.04 ± 2.20
 Flip  62.96 ± 1.54
6. UIUC Sports
  UIUC Sports是一个包含8中运动类别的数据集,实验过程中,每一个类别取100张图片做训练,其余的做测试。重复进行10次。
 Original  94.88 ± 1.02
 Flip  95.34 ± 0.83
7. MIT Scene
  MIT Scene包含有67个室内场景,实验过程中,每一个类别取80张图片做训练,其余的做测试。重复进行10次。
 Original  57.30 ± 1.18
 Flip  57.45 ± 0.72

基于Pre-Train的CNN模型的图像分类实验的更多相关文章

  1. 基于Tensorflow + Opencv 实现CNN自定义图像分类

    摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区< ...

  2. FaceRank-人脸打分基于 TensorFlow 的 CNN 模型

    FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1- ...

  3. 【神经网络篇】--基于数据集cifa10的经典模型实例

    一.前述 本文分享一篇基于数据集cifa10的经典模型架构和代码. 二.代码 import tensorflow as tf import numpy as np import math import ...

  4. CNN 模型压缩与加速算法综述

    本文由云+社区发表 导语:卷积神经网络日益增长的深度和尺寸为深度学习在移动端的部署带来了巨大的挑战,CNN模型压缩与加速成为了学术界和工业界都重点关注的研究领域之一. 前言 自从AlexNet一举夺得 ...

  5. 深度学习项目——基于卷积神经网络(CNN)的人脸在线识别系统

    基于卷积神经网络(CNN)的人脸在线识别系统 本设计研究人脸识别技术,基于卷积神经网络构建了一套人脸在线检测识别系统,系统将由以下几个部分构成: 制作人脸数据集.CNN神经网络模型训练.人脸检测.人脸 ...

  6. ZfNet解卷积:可视化CNN模型( PythonCode可视化Cifar10)

    原文链接:caffe Model的可视化 snapshot: 6000       一个在线可视化小工具:http://blog.csdn.net/10km/article/details/52713 ...

  7. 【翻译】借助 NeoCPU 在 CPU 上进行 CNN 模型推理优化

    本文翻译自 Yizhi Liu, Yao Wang, Ruofei Yu.. 的  "Optimizing CNN Model Inference on CPUs" 原文链接: h ...

  8. Keras入门(四)之利用CNN模型轻松破解网站验证码

    项目简介   在之前的文章keras入门(三)搭建CNN模型破解网站验证码中,笔者介绍介绍了如何用Keras来搭建CNN模型来破解网站的验证码,其中验证码含有字母和数字.   让我们一起回顾一下那篇文 ...

  9. 基于PaddlePaddle的语义匹配模型DAM,让聊天机器人实现完美回复 |

    来源商业新知网,原标题:让聊天机器人完美回复 | 基于PaddlePaddle的语义匹配模型DAM 语义匹配 语义匹配是NLP的一项重要应用.无论是问答系统.对话系统还是智能客服,都可以认为是问题和回 ...

随机推荐

  1. 使用runtime给类动态添加方法并调用 - class_addMethod

    上手开发 iOS 一段时间后,我发现并不能只着眼于完成需求,利用闲暇之余多研究其他的开发技巧,才能在有限时间内提升自己水平.当然,“其他开发技巧”这个命题对于任何一个开发领域都感觉不找边际,而对于我来 ...

  2. js、expression表达式解析

    首先理解一下下面的表达式:expression(eval(document.documentElement.scrollTop+document.documentElement.clientHeigh ...

  3. JSLint notepad++使用

    1.JSLint简介 JSLint定义了一组编码约定,这比ECMA定义的语言更为严格.这些编码约定汲取了多年来的丰富编码经验,并以一条年代久远的编程原则 作为宗旨:能做并不意味着应该做.JSLint会 ...

  4. 洛谷 1865 A%B问题

    题目背景 题目名称是吸引你点进来的 实际上该题还是很水的 题目描述 区间质数个数 输入输出格式 输入格式: 一行两个整数 询问次数n,范围m 接下来n行,每行两个整数 l,r 表示区间 输出格式: 对 ...

  5. Vim保存文件命令 ":wq" 与 ":x" 的区别

    CSDN转载 [1] Vim是Unix/Linux系统最常用的编辑器之一,在保存文件时,我通常选择":wq",因为最开始学习vim的时候,就只记住了几个常用的命令:也没有细究命令的 ...

  6. WEB-INF简介

    WEB-INF简介 WEB-INF是Java的WEB应用的安全目录.所谓安全就是客户端无法访问,只有服务端可以访问的目录. 如果想在页面中直接访问其中的文件,必须通过web.xml文件对要访问的文件进 ...

  7. MySQL事务机制

    事务机制的特性通常被概括为"ACID原则" A(Atomic) 原子性: 构成一个事务的所有语句应该是一个独立的逻辑单元,要么全部执行成功, 要么一个都不成功, 你不能只执行他们当 ...

  8. 利用PowerDesigner绘制PDM生成SQL Server数据库

    PowerDesigner是个很强大的建模工具,可以利用它绘制各种图形,本文利用该工具绘制PDM,进而生成SQL Server数据库. 比如绘制一个简单的学生选课.教师授课管理系统的PDM: pk表示 ...

  9. 为msysgit增加vim语法高亮文件

    在win7下装了msysgit,今天我遇到一个不爽的问题,打开git bash,用vim打开一个xml文件 结果都是黑屏的,没语法高亮,这个必须不能忍啊,我找到msysgit的安装目录,发现Vim73 ...

  10. 使用CSS画一个三角形

    <div style="width:0px;height:0px;border-width:40px;border-style:solid;border-color:transpare ...