POJ 3977 Subset
| Time Limit: 30000MS | Memory Limit: 65536K | |
| Total Submissions: 3161 | Accepted: 564 |
Description
Input
Output
Sample Input
1
10
3
20 100 -100
0
Sample Output
10 1
0 2
Source
#include <cstdio>
#include <map>
#define ll long long
using namespace std; int n;
ll a[40]; ll ll_abs(ll x)
{
return x >= 0 ? x : -x;
} void solve()
{
map<ll, int> mp;
map<ll, int>::iterator it;
pair<ll, int> res(ll_abs(a[0]), 1); //初始化结果为第一个元素
for(int i = 1; i < 1<<(n/2); ++i){ //枚举区间为[1, 2^n),当i为0时,子集为空
ll sum = 0;
int num = 0;
for(int j = 0; j < n/2; ++j){ //按位枚举
if((i>>j)&1){
sum += a[j];
++num;
}
}
res = min(res, make_pair(ll_abs(sum), num)); //子集的元素只取自于A
it = mp.find(sum);
if(it != mp.end())
it->second = min(it->second, num);
else
mp[sum] = num;
}
for(int i = 1; i < 1<<(n-n/2); ++i){
ll sum = 0;
int num = 0;
for(int j = 0; j < n-n/2; ++j){
if((i>>j)&1){
sum += a[n/2+j];
++num;
}
}
res = min(res, make_pair(ll_abs(sum), num)); //子集的元素只取自于B
it = mp.lower_bound(-sum); //查找与-sum最相近的值
if(it != mp.end()) //可能在该位置
res = min(res, make_pair(ll_abs(it->first+sum), it->second+num));
if(it != mp.begin()){ //可能在该位置的前一个位置
--it;
res = min(res, make_pair(ll_abs(it->first+sum), it->second+num));
}
}
printf("%I64d %d\n", res.first, res.second);
} int main()
{
while(scanf("%d", &n), n){
for(int i = 0; i < n; ++i)
scanf("%I64d", &a[i]);
solve();
}
return 0;
}
POJ 3977 Subset的更多相关文章
- POJ 3977 - subset - 折半枚举
2017-08-01 21:45:19 writer:pprp 题目: • POJ 3977• 给定n个数,求一个子集(非空)• 使得子集内元素和的绝对值最小• n ≤ 35 AC代码如下:(难点:枚 ...
- poj 3977 Subset(折半枚举+二进制枚举+二分)
Subset Time Limit: 30000MS Memory Limit: 65536K Total Submissions: 5721 Accepted: 1083 Descripti ...
- POJ 3977 Subset(折半枚举+二分)
SubsetTime Limit: 30000MS Memory Limit: 65536KTotal Submissions: 6754 Accepted: 1277 D ...
- 【折半枚举+二分】POJ 3977 Subset
题目内容 Vjudge链接 给你\(n\)个数,求出这\(n\)个数的一个非空子集,使子集中的数加和的绝对值最小,在此基础上子集中元素的个数应最小. 输入格式 输入含多组数据,每组数据有两行,第一行是 ...
- [poj] 3977 Subset || 折半搜索MITM
原题 给定N个整数组成的数列(N<=35),从中选出一个子集,使得这个子集的所有元素的值的和的绝对值最小,如果有多组数据满足的话,选择子集元素最少的那个. n<=35,所以双向dfs的O( ...
- POJ 3977 Subset | 折半搜索
题目: 给出一个整数集合,求出非空子集中元素和绝对值最小是多少(元素个数尽量少) 题解: 分成两半 爆搜每一半,用map维护前一半的值 每搜出后一半的一个值就去map里找和他和绝对值最小的更新答案 # ...
- POJ - 3977 Subset(二分+折半枚举)
题意:有一个N(N <= 35)个数的集合,每个数的绝对值小于等于1015,找一个非空子集,使该子集中所有元素的和的绝对值最小,若有多个,则输出个数最小的那个. 分析: 1.将集合中的元素分成两 ...
- POJ 3977:Subset(折半枚举+二分)
[题目链接] http://poj.org/problem?id=3977 [题目大意] 在n个数(n<36)中选取一些数,使得其和的绝对值最小. [题解] 因为枚举所有数选或者不选,复杂度太高 ...
- Subset POJ - 3977(折半枚举+二分查找)
题目描述 Given a list of N integers with absolute values no larger than 10 15, find a non empty subset o ...
随机推荐
- Observer Pattern
Motivation We can not talk about Object Oriented Programming without considering the state of the ob ...
- ZOJ 3261 Connections in Galaxy War(逆向并查集)
参考链接: http://www.cppblog.com/yuan1028/archive/2011/02/13/139990.html http://blog.csdn.net/roney_win/ ...
- 0环境设置 - AUTOTRACE设置
Autotrace是sqlplus的一个工具,用来显示所执行查询的查询计划 设置步骤 • cd [ORACLE_HOME]/rdbms/admin• log into SQL*Plus as SYST ...
- lintcode:Add Binary 二进制求和
题目: 二进制求和 给定两个二进制字符串,返回他们的和(用二进制表示). 样例 a = 11 b = 1 返回 100 解题: 和求两个链表的和很类似 考虑进位,考虑最后一项的进位 0+0 = 0 不 ...
- 【PHP高效搜索专题(1)】sphinx&Coreseek的介绍与安装
我们已经知道mysql中带有"%keyword%"条件的sql是不走索引的,而不走索引的sql在大数据量+大并发量的时候,不仅效率极慢还很有可能让数据库崩溃.那我们如何通过某些关键 ...
- kmalloc/kfree,vmalloc/vfree函数用法和区别
http://blog.csdn.net/tigerjibo/article/details/6412881 kmalloc/kfree,vmalloc/vfree函数用法和区别 1.kmalloc ...
- Photoshop:笔刷制作和安装
笔刷制作 1.新建一个文档,大小为要制作的笔刷大小,把画笔图像放里面 2.选择:菜单->编辑->定义画笔预设,这时在画笔面板中会出现刚定义的画笔 3.存储画笔,可以把当前的笔刷保存为一个. ...
- BeanFactory 和 ApplicationContext
Spring通过一个配置文件描述Bean及Bean直接的依赖关系,利用Java语言的反射功能实例化Bean并建立Bean之间的依赖关系.Sprig的IoC容器在完成这些底层工作的基础上,还提供了Bea ...
- JS代码片段:判断一个元素是否进入可视区域
// Determine if an element is in the visible viewport function isInViewport(element) { var rect = el ...
- PHP 语言需要避免的 10 大误区
PHP是一种非常流行的开源服务器端脚本语言,你在万维网看到的大多数网站都是使用php开发的.但是,你大概很奇怪的注意到有少部分的人发誓要离php 远远的.但是令人更奇怪的是或者很震惊的说他们不用php ...