Maximum Product Subarray

Title:

Find the contiguous subarray within an array (containing at least one number) which has the largest product.

For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.

对于Product Subarray,要考虑到一种特殊情况,即负数和负数相乘:如果前面得到一个较小的负数,和后面一个较大的负数相乘,得到的反而是一个较大的数,如{2,-3,-7},所以,我们在处理乘法的时候,除了需要维护一个局部最大值,同时还要维护一个局部最小值,由此,可以写出如下的转移方程式:

max_copy[i] = max_local[i]
max_local[i + 1] = Max(Max(max_local[i] * A[i], A[i]),  min_local * A[i])

min_local[i + 1] = Min(Min(max_copy[i] * A[i], A[i]),  min_local * A[i])

class Solution {
public:
int maxProduct(vector<int>& nums) {
int pmin = nums[];
int pmax = nums[];
int result = nums[];
for (int i = ; i < nums.size(); i++){
int t1= pmax * nums[i];
int t2= pmin * nums[i];
pmax = max(nums[i],max(t1,t2));
pmin = min(nums[i],min(t1,t2));
result = max(result,pmax);
}
return result;
}
};

Maximum Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest sum.

For example, given the array [−2,1,−3,4,−1,2,1,−5,4],
the contiguous subarray [4,−1,2,1] has the largest sum = 6.

http://blog.csdn.net/joylnwang/article/details/6859677

http://blog.csdn.net/linhuanmars/article/details/21314059

class Solution{
public:
int maxSubArray(int A[], int n) {
int maxSum = A[];
int sum = A[];
for (int i = ; i < n; i++){
if (sum < )
sum = ;
sum += A[i];
maxSum = max(sum,maxSum);
}
return maxSum;
}
};

扩展:子序列之和最接近于0

先对数组进行累加,这样得到同样长度的数组,然后,对数组排序,对排序后的数组相邻的元素相减计算绝对值,并比较大小。

class Solution{
public:
vector<int> simple(vector<int> nums,int target){
int min_gap = INT_MAX;
int index_min ;
int index_max;
for (int i = ; i < nums.size(); i++){
int sum = ;
for (int j = i; j < nums.size(); j++){
sum += nums[j];
if (min_gap > abs(sum-target)){
min_gap = abs(sum-target);
index_min = i;
index_max = j;
}
}
}
vector<int> result(nums.begin()+index_min,nums.begin()+index_max+);
return result;
}
vector<int> choose(vector<int> nums, int target){
vector<pair<int,int> > addSums(nums.size());
addSums[] = make_pair(nums[],);
for (int i =; i < nums.size(); i++){
addSums[i] = make_pair(addSums[i-].first + nums[i],i);
}
sort(addSums.begin(),addSums.end());
int min_gap = INT_MAX;
int index = -;
for (int i = ; i < addSums.size(); i++){
int t = abs(addSums[i].first - addSums[i-].first);
if (min_gap > t){
min_gap = t;
index = i;
}
}
int index_min = min(addSums[index].second,addSums[index-].second);
int index_max = max(addSums[index].second,addSums[index-].second);
vector<int> result(nums.begin()+index_min+,nums.begin()+index_max+);
return result;
}
};

这种做法我没有想到如何扩展到任意的t上面

LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关的更多相关文章

  1. 求连续最大子序列积 - leetcode. 152 Maximum Product Subarray

    题目链接:Maximum Product Subarray solutions同步在github 题目很简单,给一个数组,求一个连续的子数组,使得数组元素之积最大.这是求连续最大子序列和的加强版,我们 ...

  2. LeetCode Maximum Product Subarray(枚举)

    LeetCode Maximum Product Subarray Description Given a sequence of integers S = {S1, S2, . . . , Sn}, ...

  3. [Swift]LeetCode152. 乘积最大子序列 | Maximum Product Subarray

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  4. [LeetCode] Maximum Product Subarray 求最大子数组乘积

    Find the contiguous subarray within an array (containing at least one number) which has the largest ...

  5. [LeetCode] 152. Maximum Product Subarray 求最大子数组乘积

    Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...

  6. 152. Maximum Product Subarray - LeetCode

    Question 152. Maximum Product Subarray Solution 题目大意:求数列中连续子序列的最大连乘积 思路:动态规划实现,现在动态规划理解的还不透,照着公式往上套的 ...

  7. 【LeetCode】Maximum Product Subarray 求连续子数组使其乘积最大

    Add Date 2014-09-23 Maximum Product Subarray Find the contiguous subarray within an array (containin ...

  8. [LeetCode]152. Maximum Product Subarray

    This a task that asks u to compute the maximum product from a continue subarray. However, you need t ...

  9. leetcode 53. Maximum Subarray 、152. Maximum Product Subarray

    53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...

随机推荐

  1. 【UVA】【11021】麻球繁衍

    数序期望 刘汝佳老师的白书上的例题……参见白书 //UVA 11021 #include<cmath> #include<cstdio> #define rep(i,n) fo ...

  2. Ubuntu的LTS版本

    Ubuntu的LTS版本什么意思 LTS是长期支持(Long Term Support)的缩写. 我们每六个月制作一个新的Ubuntu桌面和服务器的版本,这意味着你总能拥有开源世界提供的最新最好的应用 ...

  3. 在windows下用FTP命令上传文件到Linux

    在桌面新建个文件夹,命名成MySQL.rpm.把需要上传的文件放到这个文件夹里.打开cmd窗口,开始用下面命令操作: C:\Users\huyadi>cd C:\Users\huyadi\Des ...

  4. 【锋利的JQuery-学习笔记】遮罩层

    效果图:  鼠标移动到上面后---> html: <div id="jnBrandList"> <ul> <li> <a href= ...

  5. hibernate Session

    转: http://kayo.iteye.com/blog/204143 Session 接口 Session 接口对于Hibernate 开发人员来说是一个最重要的接口.然而在Hibernate 中 ...

  6. Javascript 中childNodes和children的区别

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  7. java数据结构学习(一)之二分查找

      二分查找法与我们在孩童时期玩过的猜数的游戏一样,这个游戏里一个朋友会让你猜他正想的一个1至100的数,当你猜了一个数后,他会告诉你三种选择的一个:你猜的比她想的大,或小,或猜中了.为了能用最少的次 ...

  8. ElasticSearch小操之Marvel,Sense

    慢慢弄弄,说不好马上就要用呢,,, 嘿嘿 参考网址: http://es.xiaoleilu.com/ Elasticsearch 权威指南(中文版) 阅读地址:Elasticsearch权威指南(中 ...

  9. 在UWSGI和NGINX配合的情况下,配置个别目录上传及超时

    笨办法就是多加一个LOCATION. 然后,自定义以下类似参数 client_max_body_size uwsgi_connect_timeout uwsgi_read_timeout server ...

  10. Java并发包中常用类小结(一)

    从JDK1.5以后,Java为我们引入了一个并发包,用于解决实际开发中经常用到的并发问题,那我们今天就来简单看一下相关的一些常见类的使用情况. 1.ConcurrentHashMap Concurre ...