uva 387 A Puzzling Problem (回溯)
A Puzzling Problem |
The goal of this problem is to write a program which will take from 1 to 5 puzzle pieces such as those shown below and arrange them, if possible, to form a square. An example set of pieces is shown here.
The pieces cannot be rotated or flipped from their original orientation in an attempt to form a square from the set. All of the pieces must be used to form the square. There may be more than one possible solution for a set of pieces, and not every arrangement will work even with a set for which a solution can be found. Examples using the above set of pieces are shown here.
Input
The input file for this program contains several puzzles (i.e. sets of puzzle pieces) to be solved. The first line of the file is the number of pieces in the first puzzle. Each piece is then specified by listing a single line with two integers, the number of rows and columns in the piece, followed by one or more lines which specify the shape of the piece. The shape specification consists of `0' and `1' characters, with the `1' characters indicating the solid shape of the puzzle (the `0' characters are merely placeholders). For example, piece `A' above would be specified as follows:
2 3
111
101
The pieces should be numbered by the order they are encountered in the puzzle. That is, the first piece in a puzzle is piece #1, the next is piece #2, etc. All pieces may be assumed to be valid and no larger than 4 rows by 4 columns.
The line following the final line of the last piece contains the number of pieces in the next puzzle, again followed by the puzzle pieces and so on. The end of the input file is indicated by a zero in place of the number of puzzle pieces.
Output
Your program should report a solution, if one is possible, in the format shown by the examples below. A 4-row by 4-column square should be created, with each piece occupying its location in the solution. The solid portions of piece #1 should be replaced with `1' characters, of piece #2 with `2' characters, etc. The solutions for each puzzle should be separated by a single blank line.
If there are multiple solutions, any of them is acceptable. For puzzles which have no possible solution simply report ``No solution possible''.
Sample Input
4
2 3
111
101
4 2
01
01
11
01
2 1
1
1
3 2
10
10
11
4
1 4
1111
1 4
1111
1 4
1111
2 3
111
001
5
2 2
11
11
2 3
111
100
3 2
11
01
01
1 3
111
1 1
1
0
Sample Output
1112
1412
3422
3442 No solution possible 1133
1153
2223
2444
题目大意:给出一些积木,要求将积木全部使用后拼成一个4*4的正方形。
解题思路:这题思路很简单,将所有积木以数组的形式储存起来,然后在4*4的地图上逐一去判断。主要注意也就三点。
1:积木的表示方法,我是使用结构体去存的,只要记录下面的所有木块与第一个木块的关系就可以了。
2:放入木块前先判断放入木块是否会越界重叠的问题后再放入。
3:如果当前位置没有合适的积木可以放的话可以直接回溯了,因为题目要求是不能旋转(这点最关键,需要空间想象力好的才能理解)
一不小心跑进uva rank 10,唉,小开心一下。
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 20
const int R = 4; int n, vis[R][R], rec[N];
struct sque{
int dir[N][2];
int cnt;
}b[N]; void get_block(int cur){
int r, c, t, ok = 0, p, q;
char str[N];
scanf("%d%d", &r, &c);
for (int i = 0; i < r; i++){
scanf("%s", str);
for (int j = 0; j < c; j++){
if (str[j] - '0'){
if (ok){
b[cur].dir[b[cur].cnt][0] = i - p;
b[cur].dir[b[cur].cnt][1] = j - q;
b[cur].cnt++;
}
else{
b[cur].dir[b[cur].cnt][0] = 0;
b[cur].dir[b[cur].cnt][1] = 0;
p = i;
q = j;
b[cur].cnt++;
ok = 1;
}
}
}
}
} bool judge(int x, int y, int cur){
for (int i = 0; i < b[cur].cnt; i++){
if (x + b[cur].dir[i][0] < 0 || x + b[cur].dir[i][0] >= 4)
return false;
if (y + b[cur].dir[i][1] < 0 || y + b[cur].dir[i][1] >= 4)
return false;
if (vis[x + b[cur].dir[i][0]][y + b[cur].dir[i][1]])
return false;
}
return true;
} bool dfs(int x, int y, int sum, int k){
if (sum == 16){
if (k == n)
return true;
else
return false;
} if (x == 4)
return false;
if (vis[x][y]){
if (y == 3){
if (dfs(x + 1, 0, sum, k))
return true;
}
else{
if (dfs(x, y + 1, sum, k))
return true;
}
return false;
} for (int i = 1; i <= n; i++){
if (rec[i]) continue;
if (judge(x, y, i)){
rec[i] = 1;
for (int j = 0; j < b[i].cnt; j++)
vis[x + b[i].dir[j][0]][y + b[i].dir[j][1]] = i; if (y == 3){
if (dfs(x + 1, 0, sum + b[i].cnt, k + 1))
return true;
}
else{
if (dfs(x, y + 1, sum + b[i].cnt, k + 1))
return true;
} rec[i] = 0;
for (int j = 0; j < b[i].cnt; j++)
vis[x + b[i].dir[j][0]][y + b[i].dir[j][1]] = 0;
}
}
return false;
} int main(){
int text = 0;
while (scanf("%d", &n), n){
if (text++)
printf("\n");
// Init;
memset(b, 0, sizeof(b));
memset(vis, 0, sizeof(vis));
memset(rec, 0, sizeof(rec)); // Read;
for (int i = 1; i <= n; i++)
get_block(i); if(dfs(0, 0, 0, 0)){
for (int i = 0; i < R; i++){
for (int j = 0; j < R; j++)
printf("%d", vis[i][j]);
printf("\n");
}
}
else
printf("No solution possible\n");
}
return 0;
}
uva 387 A Puzzling Problem (回溯)的更多相关文章
- UVA - 387 A Puzzling Problem
题目链接: https://vjudge.net/problem/UVA-387 思路: 非常有意思的拼图,深搜+回溯, 输出硬伤:除了第一次之外,每次先输空格,再输出结果, 以及可能给的数据拼不成4 ...
- UVA - 524 Prime Ring Problem(dfs回溯法)
UVA - 524 Prime Ring Problem Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & % ...
- UVa 101 The Blocks Problem Vector基本操作
UVa 101 The Blocks Problem 一道纯模拟题 The Problem The problem is to parse a series of commands that inst ...
- uva387 - A Puzzling Problem
A Puzzling Problem The goal of this problem is to write a program which will take from 1 to 5 puzzle ...
- 【暑假】[深入动态规划]UVa 1380 A Scheduling Problem
UVa 1380 A Scheduling Problem 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=41557 ...
- uva 10837 - A Research Problem(欧拉功能+暴力)
题目链接:uva 10837 - A Research Problem 题目大意:给定一个phin.要求一个最小的n.欧拉函数n等于phin 解题思路:欧拉函数性质有,p为素数的话有phip=p−1; ...
- UVA 810 - A Dicey Problem(BFS)
UVA 810 - A Dicey Problem 题目链接 题意:一个骰子,给你顶面和前面.在一个起点,每次能移动到周围4格,为-1,或顶面和该位置数字一样,那么问题来了,骰子能不能走一圈回到原地, ...
- UVA 10026 Shoemaker's Problem 鞋匠的难题 贪心+排序
题意:鞋匠一口气接到了不少生意,但是做鞋需要时间,鞋匠只能一双一双地做,根据协议每笔生意如果拖延了要罚钱. 给出每笔生意需要的天数和每天的罚钱数,求出最小罚钱的排列顺序. 只要按罚款/天数去从大到小排 ...
- UVA 1640 The Counting Problem UVA1640 求[a,b]或者[b,a]区间内0~9在里面各个数的数位上出现的总次数。
/** 题目:UVA 1640 The Counting Problem UVA1640 链接:https://vjudge.net/problem/UVA-1640 题意:求[a,b]或者[b,a] ...
随机推荐
- sql server 安装后登录服务器
计算机名\数据库实例名 z*******f-PC\zzf
- LoadRunner界面分析(二)
1.Controller 2.创建运行场景 3.方案设计 4.Resuls settting 5.监视方案
- VM虚拟机快照还原效果实现方式
===================================================默认"快照删除"行为:============================ ...
- html --- canvas --- javascript --- 拖拽圆圈
代码如下: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <tit ...
- Windows下安装GTK+
Step 1:到GTK官方网站上下载安装包.有32位的和64位,64位的有这句: Note that these 64-bit packages are experimental. Binary co ...
- WPF 简介
简介 一. WPF产生的背景 因为人们的生活水平不断提前,审美观也随着提升,而软件的应用发展水平目前无法赶上大家的审美观和使用要求:比如:像电影中的软件能够方便的使用,而且有动态的效果同时附加形象 ...
- pku1273 Drainage Ditches
http://poj.org/problem?id=1273 网络流,Dinic #include <stdio.h> #include <string.h> #include ...
- jq 选项卡
<!doctype html> <html> <head> <meta charset="utf-8"> <style> ...
- RHAS Linux下架构Lotus Domino详解(附视频)
此处下载操作视频:RHAS Linux下架构Lotus Domino 6.5视频教程 在rhas下架构Lotus Domino 汉化 650) this.width=650;" o ...
- labview图形和图表的类型
http://zone.ni.com/reference/zhs-XX/help/371361L-0118/lvconcepts/types_of_graphs_and_charts/ LabVIEW ...