Paths on a Grid

Description
Imagine you are attending your math lesson at school. Once again, you are bored because your teacher tells things that you already mastered years ago (this time he's explaining that (a+b)2=a2+2ab+b2). So you decide to waste your time with drawing modern art instead.
Fortunately you have a piece of squared paper and you choose a rectangle of size n*m on the paper. Let's call this rectangle together with the lines it contains a grid. Starting at the lower left corner of the grid, you move your pencil to the upper right corner, taking care that it stays on the lines and moves only to the right or up. The result is shown on the left:
Really a masterpiece, isn't it? Repeating the procedure one more time, you arrive with the picture shown on the right. Now you wonder: how many different works of art can you produce?
Input
The input contains several testcases. Each is specified by two unsigned 32-bit integers n and m, denoting the size of the rectangle. As you can observe, the number of lines of the corresponding grid is one more in each dimension. Input is terminated by n=m=0.
Output
For each test case output on a line the number of different art works that can be generated using the procedure described above. That is, how many paths are there on a grid where each step of the path consists of moving one unit to the right or one unit up? You may safely assume that this number fits into a 32-bit unsigned integer.
Sample Input
5 4
1 1
0 0
Sample Output
126
2

题目大意:

    给定一个M*N的方格。问有多少种走法使其从左下角到右上角。

解题思路:

    简单的组合数学。

    从左下角到右上角。毕竟要向右M步,向上N步。共计M+N步。求Com[M+N][M]即可。

    PS:Com[M+N][M]=Com[M+N][N] 在求Com的时候,可以选择min(M,N)来进行计算。否则超时。。。

    PS2:注意被调写法的正确性。若先算分子后算分母会爆longlong。

Code:

 /*************************************************************************
> File Name: poj1942.cpp
> Author: Enumz
> Mail: 369372123@qq.com
> Created Time: 2014年10月21日 星期二 20时12分35秒
************************************************************************/ #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string>
#include<cstring>
#include<list>
#include<queue>
#include<stack>
#include<map>
#include<set>
#include<algorithm>
#define MAXN 100000
using namespace std;
long long c(long long a,long long b)
{
long long ret=;
for (long long i=;i<=a;i++)
{
ret=ret*(b--)/i; /*注意其正确性,每经过i个数,必有一个能被i整除*/
}
return ret;
}
int main()
{
long long a,b;
cout<<c(,)<<endl;
while (cin>>a>>b)
{
if (a>b) swap(a,b);
if (!a&&!b) break;
cout<<c(a,a+b)<<endl;
}
return ;
}

POJ1942——Paths on a Grid(组合数学)的更多相关文章

  1. poj1942 Paths on a Grid(无mod大组合数)

    poj1942 Paths on a Grid 题意:给定一个长m高n$(n,m \in unsigned 32-bit)$的矩形,问有几种走法.$n=m=0$时终止. 显然的$C(m+n,n)$ 但 ...

  2. poj1942 Paths on a Grid

    处理阶乘有三种办法:(1)传统意义上的直接递归,n的规模最多到20+,太小了,在本题不适用,而且非常慢(2)稍快一点的算法,就是利用log()化乘为加,n的规模虽然扩展到1000+,但是由于要用三重循 ...

  3. poj 1924 Paths on a Grid(组合数学)

    题目:http://poj.org/problem?id=1942 题意:给定一个矩形网格的长m和高n,其中m和n都是unsigned int32类型,一格代表一个单位,就是一步,求从左下角到右上角有 ...

  4. POJ1942 Paths on a Grid(组合)

    题目链接. 分析: #include <cstdio> #include <iostream> #include <map> #include <cstrin ...

  5. Paths on a Grid(简单组合数学)

    Paths on a Grid Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 23008 Accepted: 5683 Desc ...

  6. Paths on a Grid(规律)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 23270   Accepted: 5735 ...

  7. [ACM] POJ 1942 Paths on a Grid (组合)

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 21297   Accepted: 5212 ...

  8. POJ 1942:Paths on a Grid

    Paths on a Grid Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22918   Accepted: 5651 ...

  9. Paths on a Grid POJ - 1942 组合数学 (组合数的快速计算)

    题意:格路问题 没什么难度 难点在于如何快速计算相对较大的组合数 思路:运用手写计算组合数的方式进行计算  如c(8,3) 如果手算就是   8*7*6/(3*2*1)这样可以很快得解出 计算代码为: ...

随机推荐

  1. UVa11384

    题意:给定正整数n,求把1,2,--,n中所有书都变成0的最少操作次数,每次操作可从序列中选择一个或多个整数,同时减去一个相同的正整数. 分析:如1,2,3,4,5,6, 第一步将4,5,6同时减4, ...

  2. C++ 文件读写方案选型

    严格来说, 有 3 种风格. UNIX 底层读写库 c 语言 stdio 标准库 iostream 流 一般的工程中, 底层读写库封装程度太低, 需要自己处理缓存和很多通用的异常场景. 不适合. 网络 ...

  3. Poj OpenJudge 百练 Bailian 1008 Maya Calendar

    1.Link: http://poj.org/problem?id=1008 http://bailian.openjudge.cn/practice/1008/ 2.content: Maya Ca ...

  4. windows phone URI映射

    UriMapping用于在一个较短的URI和你项目中的xaml页的完整路径定义一个映射(别名).通过使用别名URI,开发者可以在不改变导航代码的情况下来改变一个项目的内部结构.该机制还提供了一个简单的 ...

  5. 基于MRG_MyISAM引擎的Mysql分表

    正常情况下的分表,都是直接创建多个相同结构的表,比如table_1.table_2...最近碰到一个特殊需求,需要创建一个主表,所有分表的数据增删改查,全部自动实时更新到主表,这个时候可以使用MRG_ ...

  6. Jquery操作下拉框(DropDownList)的取值赋值实现代码(王欢)

    Jquery操作下拉框(DropDownList)的取值赋值实现代码(王欢) 1. 获取选中项: 获取选中项的Value值: $('select#sel option:selected').val() ...

  7. HTML5如何重塑O2O用户体验

    低频次垂直O2O服务应该继续开发原生APP吗?大家有没有发现做一个APP的推广成本和获取用户的成本越来越高?第二,用户安装APP之后,用户并不是经常点击使用APP的,那这是为什么?数据表明90%的O2 ...

  8. Looper Handler 多线程

    Looper is created by default on main UI    Property:        // main ui thread, if Looper is initiali ...

  9. Node.js 【Stream之笔记】

    从Node.js API文档中可知, 'A stream is an abstract interface implemented by various objects in Node. For ex ...

  10. 程序使用嵌套的for循环找出2〜100中的素数

    #import <Foundation/Foundation.h> int main () { /* local variable definition */ int i, j; ; i& ...