Java常见排序算法之堆排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法。总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的。
从今天开始,我们将要进行基本的排序算法的讲解。Are you ready?Let‘s go~~~
1、排序算法的基本概念的讲解
时间复杂度:需要排序的的关键字的比较次数和相应的移动的次数。
空间复杂度:分析需要多少辅助的内存。
稳定性:如果记录两个关键字的A和B它们的值相等,经过排序后它们的位置没有发生交换,那么我们称这个排序算法是稳定的。
否则我们称这个排序算法是不稳定的。
排序算法的常见分类:
1、内部排序(最常见的一种排序方式,不需要借助第三方辅助存储工具)
2、外部排序(需要借助外部存储来辅助完成相关的排序操作)
如果参与排序的数据元素非常的多,数据量非常的大,计算机无法把整个排序过程放到内存中进行的话,
我们必须借助外部存储器如磁盘来完成,这种排序方式,我们称之为外部排序。
其中外部排序最常见的就是多路归并排序,即将原始文件分解成多个能够一次性装入内存的部分,分别把每一部分调入
内存完成相应的排序,接下来在对多个有序的外部文件进行多路归并排序。
对于我们绝大多数的程序员而言,我们经常遇到的为内部排序。接下来我们将要对常见的内部排序进行相应的讲解。
今天要讲解的内部排序为:
堆排序
1、堆排序的基本概念的讲解
堆排序是一个树形选择排序方法,它的特点是:在排序过程中,将L[1...n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树
中双亲结点和孩子结点之间的内在关系,在当前无序区中选择关键字最大(或最小)的元素。
堆的定义如下:n个关键字序列L[1...n]称为堆,当且仅当该序列满足:
①L(i)<=L(2i)且L(i)<=L(2i+1)
②L(i)>L(2i)且L(i)>=L(2i+1)(1<=i<=[n/2])
满足第一种情况的堆称为小根堆(小顶堆),
满足第二种情况的堆称为大根堆(大顶堆)。
算法思想:对于构造初始堆,就是一个反复筛选的过程。
n个结点的完全二叉树,最后一个结点是第【n/2】个结点为根的孩子。
对第【n/2】个结点为根的子树筛选,使该子树成为堆。
之后向前依次对各结点(【n/2】-1~1)为根的子树进行筛选,看该结点值是否大于其左右结点的值,
若不是,将左右结点中较大值与之交换,交换后可能会破坏下一级的堆,于是继续采用上述方法构造
下一级的堆,直到以该结点的子树构造成堆为止。
反复利用上述调整堆的方法建堆,直到根节点为止。
2、堆排序之Java代码实现
package com.yonyou.test; /**
* 内部排序算法之堆排序
* 默认按照从小到大进行排序操作
* @author 小浩
* @创建日期 2015-3-24
*/
public class Test{
public static void main(String[] args) {
//需要进行排序的数组
int[] array=new int[]{8,3,2,1,7,4,6,5};
//输出原数组的内容
printResult(array);
//进行堆排序操作
for(int i=array.length-1;i>0;i--)
{
//进行n-1次建大顶堆,每次建堆,都把最小的值放到根位置上面
//同时在每次建堆的过程中选出最大的值作为根
//创建大顶堆的过程也是创建完全二叉树的过程
buildMaxHeap(array,i);
} //输出排序后的相关结果
printResult(array);
} /**
* 建立大顶堆的过程
* @param array
* @param i
*/
private static void buildMaxHeap(int[] array, int i) {
//从叶子节点的第一个父节点开始循环
for(int j=(i-1)/2;j>=0;j--)
{
//最后一个节点并且这棵树只有左子树
if((2*j+1==i)&&(i%2!=0))
{
if(array[j]<array[2*j+1])
swap(array,j,2*j+1);
}else{
if(array[j]<array[2*j+1])
swap(array,j,2*j+1);
if(array[j]<array[2*j+2])
swap(array,j,2*j+2);
}
}
swap(array,0,i);
} /**
* 输出相应数组的结果
* @param array
*/
private static void printResult(int[] array) {
for(int value:array)
System.out.print(" "+value+" ");
System.out.println();
} /**
* 交换数组中两个变量的值
* @param array
* @param i
* @param j
*/
private static void swap(int[] array,int i,int j){
int temp=array[i];
array[i]=array[j];
array[j]=temp;
}
}
3.堆排序的效率分析
时间复杂度:假设有n个数据,数据交换的次数最多为n-1次,但程序的总体的比较次数较多。所以综合考虑有直接选择排序的时间复杂度为O(n2)
(n的平方)。所以当记录占用字节数较多时,通常比直接插入排序的执行速度快些。
空间复杂度:直接选择排序的空间复杂度很好,它只需要一个附加单元用于数据交换,所以其空间复杂度为O(1)。
稳定性:由于在直接选择排序中存在着不相邻元素之间的互换,因此,直接选择排序是一种不稳定的排序方法。
好吧,直接选择排序的讲解就先到这里了。
Java常见排序算法之堆排序的更多相关文章
- Java常见排序算法之归并排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java常见排序算法之Shell排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java常见排序算法之折半插入排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java常见排序算法之直接插入排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java常见排序算法之快速排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java常见排序算法之冒泡排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- Java常见排序算法之直接选择排序
在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...
- 算法 | Java 常见排序算法(纯代码)
目录 汇总 1. 冒泡排序 2. 选择排序 3. 插入排序 4. 快速排序 5. 归并排序 6. 希尔排序 6.1 希尔-冒泡排序(慢) 6.2 希尔-插入排序(快) 7. 堆排序 8. 计数排序 9 ...
- java常见排序算法
今天去面试的时候又考了排序算法,排序这个东西,你以为你懂了,但是真正去写的时候才会发现好多细节自己都模棱两可,我写着写着就全都乱了,回来之后赶紧重新写一遍. (1)冒泡排序 public void b ...
随机推荐
- [Everyday Mathematics]20150226
设 $z\in\bbC$ 适合 $|z+1|>2$. 试证: $$\bex |z^3+1|>1. \eex$$
- 点击图片名,让图片在pictureBox中显示 z
public string filepath; public Form1() { InitializeComponent(); } private void button1_Click(object ...
- ORACLE TM锁
Oracle的TM锁类型 锁模式 锁描述 解释 SQL操作 0 none 1 NULL 空 Select 2 SS(Row-S) 行级共享锁,其他对象只能查询这些数据行 Select for upda ...
- loadrunner下检查点乱码情况处理
对于很多用过LR的人来说,乱码一直是很纠结的事情,尤其是对新手来说.网上给的解决方法是在录制的时候勾选UTF-8选项,但是似乎并没有解决. 对于用户名为中文或者检查点为中文的情况,我们又该如何去处理呢 ...
- javascript针对DOM的应用
所谓针对DOM的应用.也就我这里只教大家用javascript操作页面中dom元素做交互.我相信可能大部分人来这里学javascript主要还是想用这个结合页面中的DOM元素做一些实际有用的交互效果. ...
- [转]32位和64位系统区别及int字节数
一)64位系统和32位有什么区别? 1.64bit CPU拥有更大的寻址能力,最大支持到16GB内存,而32bit只支持4G内存 2.64位CPU一次可提取64位数据,比32位提高了一倍,理论上性能会 ...
- Linux_搜文件
Linux 下搜文件, 通常先用 whereis 或 locate ,如果找不到,才以 find 搜寻!因为 whereis 与 locate 是利用数据库来搜寻数据,省时间! <<鸟哥的 ...
- HBase应用场景
适用场景 列族结构经常调整 高并发写入 结构化数据及半结构化数据 Key-Value存储 有序存储 固定集合(多版本) 定时删除记录(TTL) 不适用场景 事务 join,union,groupb ...
- cocos2d-x3.2下获取文件夹下所有文件名的方法
这里提供一个函数获取文件夹下所有文件名的方法,直接上代码了. 原文地址:http://blog.csdn.net/qqmcy/article/details/36184733 // // Visib ...
- jquery 回车切换 tab功能
挺有趣的,Jquery 回车切换tab功能的实现哦 <html> <head><!--jquery库.js--></head> <body> ...