A Puzzling Problem

The goal of this problem is to write a program which will take from 1 to 5 puzzle pieces such as those shown below and arrange them, if possible, to form a square. An example set of pieces is shown here.

The pieces cannot be rotated or flipped from their original orientation in an attempt to form a square from the set. All of the pieces must be used to form the square. There may be more than one possible solution for a set of pieces, and not every arrangement will work even with a set for which a solution can be found. Examples using the above set of pieces are shown here.

Input

The input file for this program contains several puzzles (i.e. sets of puzzle pieces) to be solved. The first line of the file is the number of pieces in the first puzzle. Each piece is then specified by listing a single line with two integers, the number of rows and columns in the piece, followed by one or more lines which specify the shape of the piece. The shape specification consists of `0' and `1' characters, with the `1' characters indicating the solid shape of the puzzle (the `0' characters are merely placeholders). For example, piece `A' above would be specified as follows:

2 3
111
101

The pieces should be numbered by the order they are encountered in the puzzle. That is, the first piece in a puzzle is piece #1, the next is piece #2, etc. All pieces may be assumed to be valid and no larger than 4 rows by 4 columns.

The line following the final line of the last piece contains the number of pieces in the next puzzle, again followed by the puzzle pieces and so on. The end of the input file is indicated by a zero in place of the number of puzzle pieces.

Output

Your program should report a solution, if one is possible, in the format shown by the examples below. A 4-row by 4-column square should be created, with each piece occupying its location in the solution. The solid portions of piece #1 should be replaced with `1' characters, of piece #2 with `2' characters, etc. The solutions for each puzzle should be separated by a single blank line.

If there are multiple solutions, any of them is acceptable. For puzzles which have no possible solution simply report ``No solution possible''.

Sample Input

4
2 3
111
101
4 2
01
01
11
01
2 1
1
1
3 2
10
10
11
4
1 4
1111
1 4
1111
1 4
1111
2 3
111
001
5
2 2
11
11
2 3
111
100
3 2
11
01
01
1 3
111
1 1
1
0

Sample Output

1112
1412
3422
3442 No solution possible 1133
1153
2223
2444

 

// 题意:用n个积木块拼出一个4*4的正方形,要求每个块恰好用一次,不能旋转或者翻转。求任意一个方案

// 算法:本题写法有很多,由于规模非常小,这里给出一个效率不算高但较好实现的方法:每层搜索选一个可用积木,再枚举一个位置放上去

 

一个一个放即可。

Piece封装之后,代码更清晰。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
const int maxn=5;
int board[maxn][maxn];
int n;
struct Piece {
int r, c, size;
char data[maxn][maxn];
void read() {
scanf("%d%d", &r, &c);
for(int i=0;i<r;i++)
{
scanf("%s", data[i]);
for(int j=0;j<c;j++)
size+=data[i][j]-'0';
}
}
bool can_place(int x, int y) {
if(x+r>4 || y+c>4) return false;
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)
if(data[i][j]=='1' && board[x+i][y+j]!=0)
return false;
return true;
} void fill(int x, int y, int v) {
for(int i=0;i<r;i++)
for(int j=0;j<c;j++)
if(data[i][j]=='1')
board[x+i][y+j]=v;
}
}pieces[5]; bool dfs(int d, int cnt)
{
if(d==n)
{
return cnt==16;
} for(int i=0;i<4;i++)
for(int j=0;j<4;j++)
{
if(pieces[d].can_place(i, j))
{
pieces[d].fill(i, j, d+1);
if(dfs(d+1, cnt+pieces[d].size)) return true;
pieces[d].fill(i, j, 0);
} }
return false;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("./uva387.in", "r", stdin);
#endif
int kase=0;
while(scanf("%d", &n)==1 && n) {
kase++;
if(kase!=1)
printf("\n");
memset(pieces, 0, sizeof(pieces));
memset(board, 0, sizeof(board));
int total=0;
for(int i=0;i<n;i++)
{
pieces[i].read();
total+=pieces[i].size;
}
if(total==16 && dfs(0, 0))
{
for(int i=0;i<4;i++)
{
for(int j=0;j<4;j++)
printf("%d", board[i][j]);
printf("\n");
}
}
else
printf("No solution possible\n"); }
return 0;
}

uva387 - A Puzzling Problem的更多相关文章

  1. uva 387 A Puzzling Problem (回溯)

     A Puzzling Problem  The goal of this problem is to write a program which will take from 1 to 5 puzz ...

  2. UVA - 387 A Puzzling Problem

    题目链接: https://vjudge.net/problem/UVA-387 思路: 非常有意思的拼图,深搜+回溯, 输出硬伤:除了第一次之外,每次先输空格,再输出结果, 以及可能给的数据拼不成4 ...

  3. [DLX精确覆盖] hdu 1603 A Puzzling Problem

    题意: 给你n块碎片,这些碎片不能旋转.翻折. 问你能不能用当中的某些块拼出4*4的正方形. 思路: 精确覆盖裸题了 建图就是看看每一个碎片在4*4中能放哪些位置,这个就作为行. 列就是4*4=16个 ...

  4. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  5. 【转】Dancing Links题集

    转自:http://blog.csdn.net/shahdza/article/details/7986037 POJ3740 Easy Finding [精确覆盖基础题]HUST1017 Exact ...

  6. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  7. 【HDOJ图论题集】【转】

    =============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...

  8. hdu图论题目分类

    =============================以下是最小生成树+并查集====================================== [HDU] 1213 How Many ...

  9. dancing links 题集转自夏天的风

    POJ3740     Easy Finding [精确覆盖基础题] HUST1017    Exact cover [精确覆盖基础] HDOJ3663 Power Stations [精确覆盖] Z ...

随机推荐

  1. 基于CentOS与VmwareStation10搭建Oracle11G RAC 64集群环境:4.安装Oracle RAC FAQ-4.1.系统界面报错Gnome

    1.错误信息:登录系统后,屏幕弹出几个错误对话框,无菜单.无按钮 GConf error: Failed to contact configuration server; some possible ...

  2. SpringMvc+jquery easyui模块开发7步骤

    搞了一段java的开发,总结出模块开发经验: SpringMvc+jquery easyui模块开发7步骤:1) 数据表(table):                定义表结构并创建数据表t_use ...

  3. 浅谈MySQL Replication(复制)基本原理

    1.MySQL Replication复制进程MySQL的复制(replication)是一个异步的复制,从一个MySQL instace(称之为Master)复制到另一个MySQL instance ...

  4. Web安全测试学习笔记(Cookie&Session)

    一,Session:含义:有始有终的一系列动作\消息1, 隐含了“面向连接” 和“保持状态”两种含义2, 一种用来在客户端与服务器之间保持状态的解决方案3, 也指这种解决方案的存储结构“把××保存在s ...

  5. [再寄小读者之数学篇](2014-11-19 $\tan x/x$ 在 $(0,\pi/2)$ 上递增)

    $$\bex \frac{\tan x}{x}\nearrow. \eex$$ Ref. [Proof Without Words: Monotonicity of $\tan x/x$ on $(0 ...

  6. ylb:SQL 常用函数

    ylbtech-SQL Server: SQL Server-SQL 常用函数 1,数学函数 2,日期和时间函数 3,字符串函数 4,转换函数 1,ylb:SQL 常用函数返回顶部 1,数学函数 2, ...

  7. 企业网站DDOS防护解决方案

    随着网络的普及,越来越多的企业开始了上网之路,由于网络安全知识的欠缺,很多企业以为做一个网站就 等于 网络化了,于是狠花血本请专业网络公司制作出各种漂亮的网页.但做完才发现,网络上的各种漏洞的DDOS ...

  8. 面积最大的全1子矩阵--九度OJ 1497

    题目描述: 在一个M * N的矩阵中,所有的元素只有0和1,从这个矩阵中找出一个面积最大的全1子矩阵,所谓最大是指元素1的个数最多. 输入: 输入可能包含多个测试样例.对于每个测试案例,输入的第一行是 ...

  9. Python的descriptor (2)

    前面说了descriptor,这个东西其实和Java的setter,getter有点像.但这个descriptor和上文中我们开始提到的函数方法这些东西有什么关系呢? 所有的函数都可以是descrip ...

  10. python实现不可修改的常量

    因为种种原因,Python并未提供如C/C++/Java一样的const修饰符,换言之,python中没有常量,至少截止2015年年末,还没有这个打算.Python程序一般通过约定俗成的变量名全大写的 ...