上面两篇博客,解释了概率有向图(贝叶斯网),和用其解释条件独立。本篇将研究马尔可夫随机场(Markov random fields),也叫无向图模型,或称为马尔科夫网(Markov network)

下面附上,上述实验的matlab代码。没有插入matlab选项,大家复制到matlab里面看吧。下次我用python实现吧

% PRML image de-noising
clc;
clear;
close all;
A=imread('a.jpg');%读入名字为a.jpg的图片
imshow(A);
M=;
N=;%把图片处理一下大小
A=imresize(A,[M,N]);
X = rgb2gray(A); for i=:M%%二值化图像,要根据实验图像来改天阈值,本实验阈值为200
for j=:N
if(X(i,j)<)%200为阈值,请您根据实际实验图片改变
X(i,j)=;
else
X(i,j)=;
end end
end
Y=X%把原图X保存在Y里
imshow(X)%显示X
for i=:M%这两个for循环是改变二值化图像10%点的值。
for j=:N
if(rand()<0.1)%以百分之10的概率进行改变
if(Y(i,j)==)
% Y(i,j)=;
Y(i,j)=;
else
Y(i,j)=;
end
end
end
end
figure;
imshow(Y);%显示带有噪声的图像 YY=zeros(M,N)
for i=:M%把{,}转换为{-,+}
for j=:N if Y(i,j)==
YY(i,j)=;
else
YY(i,j)=-;
end end
end %参数设置
beta=1.0;
yita=2.1;
h=;
%step1
R=YY; %R是要逼近X的图像,YY是噪声图像 %step2
Change=
while Change %系统扫描法,可以试试随机选点法的效果
Change=;
for i=:M-
for j=:N-
temp=R(i,j);
%若这个点状态为+,计算这一点的能量。
%解释一下为什么是2*beta..因为这个点不仅影响自己的能量函数,也影响了周围四个点的能量函数。
%所以-*beta=-beat*(..)-beat*(...).第一项相当于它自己的能量函数,第二项相当于周围能量函数的一部分。
%R(i,j)不会对其他点的能量造成影响,所以只考虑(i,j)点的能量与其组成团的点的部分能量函数即可。
R(i,j)=;
Epos=h*R(i,j)-*beta*(R(i+,j)*R(i,j)+R(i-,j)*R(i,j)+R(i,j+)*R(i,j)+R(i,j-)*R(i,j))-yita*R(i,j)*YY(i,j);
R(i,j)=-;
Eneg=h*R(i,j)-*beta*(R(i+,j)*R(i,j)+R(i-,j)*R(i,j)+R(i,j+)*R(i,j)+R(i,j-)*R(i,j))-yita*R(i,j)*YY(i,j);
if Epos~=Eneg
R(i,j)=1.0*(Epos<Eneg)+(Epos>Eneg)*-1.0;
else
R(i,j)=temp;
end
if temp~=R(i,j)
Change=;%若有变化则继续while1的系统扫描,若每个点都没有改变则结束程序
end
end
end
end for i=:M
for j=:N
if(R(i,j)==)
Y(i,j)=;
else
Y(i,j)=;
end
end
end
figure;
imshow(Y)
%错误的概率
disp( ['error rate is %d ' num2str(sum(sum(Y~=X))/(M*N))])

参考文献:

本blog参考书籍(PRML8.3节)

ICM算法参考(Kittler and Foglein,1984)

本人水平有限,怀着分享学习的态度发表此文,欢迎大家批评,交流。感谢您的阅读。
欢迎转载本文,转载时请附上本文地址:http://www.cnblogs.com/Dzhouqi/p/3207601.html
另外:欢迎访问我的博客 http://www.cnblogs.com/Dzhouqi/

马尔可夫随机场(Markov random fields) 概率无向图模型 马尔科夫网(Markov network)的更多相关文章

  1. Markov Random Fields

    We have seen that directed graphical models specify a factorization of the joint distribution over a ...

  2. 条件随机场 Conditional Random Fields

    简介 假设你有冠西哥一天生活中的照片(这些照片是按时间排好序的),然后你很无聊的想给每张照片打标签(Tag),比如这张是冠西哥在吃饭,那张是冠西哥在睡觉,那么你该怎么做呢? 一种方法是不管这些照片的序 ...

  3. 随机场(Random field)

    一.随机场定义 http://zh.wikipedia.org/zh-cn/随机场 随机场(Random field)定义如下: 在概率论中, 由样本空间Ω = {0, 1, …, G − 1}n取样 ...

  4. 条件随机场(Conditional random field)

    条件随机场真是把我给折磨坏了啊,本以为一本小小的<统计学习方法>攻坚剩下最后一章,心情还是十分愉悦的,打算一口气把它看完,结果真正啃起来真是无比的艰难啊,每一句对我都好像是天书一般,怎么这 ...

  5. 马尔科夫随机场(MRF)及其在图像降噪中的matlab实现

    (Markov Random Field)马尔科夫随机场,本质上是一种概率无向图模型 下面从概率图模型说起,主要参考PR&ML 第八章 Graphical Model (图模型) 定义:A g ...

  6. PGM:无向图模型:马尔可夫网

    http://blog.csdn.net/pipisorry/article/details/52489321 马尔可夫网 马尔可夫网在计算机视觉领域通常称为马尔可夫随机场(Markov random ...

  7. 马尔科夫随机场(Markov Random Field)

    马尔可夫随机场(Markov Random Field),它包含两层意思:一是什么是马尔可夫,二是什么是随机场. 马尔可夫过程可以理解为其当前的状态只与上一刻有关而与以前的是没有关系的.X(t+1)= ...

  8. 马尔科夫随机场模型(MRF-Markov Random Field)

    原文: http://blog.sina.com.cn/s/blog_92c398b00102vs3q.html 马尔科夫过程​ 隐马尔科夫过程​​ 与马尔科夫相比,隐马尔可夫模型则是双重随机过程,不 ...

  9. PGM学习之七 MRF,马尔科夫随机场

    之前自己做实验也用过MRF(Markov Random Filed,马尔科夫随机场),基本原理理解,但是很多细节的地方都不求甚解.恰好趁学习PGM的时间,整理一下在机器视觉与图像分析领域的MRF的相关 ...

随机推荐

  1. 数据库 Navicat_Premium_11.0.10 破解版下载安装

    下载地址:http://www.liangchan.net/soft/download.asp?softid=4785&downid=8&id=4804 破解说明:安装之后不要立即启动 ...

  2. Spark Streaming:大规模流式数据处理的新贵

    转自:http://www.csdn.net/article/2014-01-28/2818282-Spark-Streaming-big-data 提到Spark Streaming,我们不得不说一 ...

  3. 当心文件 I/O 有错误

    当心文件 I/O 有错误. #include <iostream> #include <iostream> #include <numeric> #include ...

  4. 分页技巧__设计分页用的QueryHelper辅助对象

    分页技巧__设计分页用的QueryHelper辅助对象 FROM 必须 实体名 WHERE  可选 条件1 AND 条件2 AND ... 条件n ORDER BY 可选 属性1, 属性2, ... ...

  5. IOS 开发之 -- 过滤掉字符串里面所有的非法字符 字典和json之间的互转

    比如一个字符串: NSString * hmutStr = @"(010)*(123)E6(234)**150-1111-^^-1234#" 很多时候,数据之间的传输,我们仅仅只想 ...

  6. Zabbix-3.0.3使用自带模板监控MySQL

    导读 Zabbix是一款优秀的,开源的,企业级监控软件,可以通过二次开发来监控你想要监控的很多服务,本文介绍使用Zabbix自带的模板监控MySQL服务. 配置userparameter_mysql. ...

  7. Android 按Menu弹出菜单

    \res\anim\menu_in.xml    资源文件(动画) <?xml version="1.0" encoding="UTF-8"?> & ...

  8. Json数组基础知识

    1.对象是一个无序的“‘名称/值’对”集合. (1)一个对象以“{”(左括号)开始,“}”(右括号)结束. (2)每个“名称”后跟一个“:”(冒号): (3)“‘名称/值’ 对”之间使用“,”(逗号) ...

  9. 40 个顶级 jQuery 图片、内容滑块和幻灯片

    在这个快速发展的网络世界中,我们使用图片.内容滑块和幻灯片来给网站实现良好.有吸引力的外观.你可以吸引浏览者借助图像滑块让网站更加具有活力.使用 JavaScript 可以轻松实现轻量级的图片和内容滑 ...

  10. 让asp.net程序在修改web.config后不重启

    默认情况下web.config修改后,asp.net程序会被重启.为了防止程序重启,要修改machine.config 文件. machine.config默认在C:\WINDOWS\Microsof ...