Danil decided to earn some money, so he had found a part-time job. The interview have went well, so now he is a light switcher.

Danil works in a rooted tree (undirected connected acyclic graph) with n vertices, vertex 1 is the root of the tree. There is a room in each vertex, light can be switched on or off in each room. Danil's duties include switching light in all rooms of the subtree of the vertex. It means that if light is switched on in some room of the subtree, he should switch it off. Otherwise, he should switch it on.

Unfortunately (or fortunately), Danil is very lazy. He knows that his boss is not going to personally check the work. Instead, he will send Danil tasks using Workforces personal messages.

There are two types of tasks:

pow v describes a task to switch lights in the subtree of vertex v.
get v describes a task to count the number of rooms in the subtree of v, in which the light is turned on. Danil should send the answer to his boss using Workforces messages.
A subtree of vertex v is a set of vertices for which the shortest path from them to the root passes through v. In particular, the vertex v is in the subtree of v.

Danil is not going to perform his duties. He asks you to write a program, which answers the boss instead of him.

Input
The first line contains a single integer n (1 ≤ n ≤ 200 000) — the number of vertices in the tree.

The second line contains n - 1 space-separated integers p2, p3, ..., pn (1 ≤ pi < i), where pi is the ancestor of vertex i.

The third line contains n space-separated integers t1, t2, ..., tn (0 ≤ ti ≤ 1), where ti is 1, if the light is turned on in vertex i and 0 otherwise.

The fourth line contains a single integer q (1 ≤ q ≤ 200 000) — the number of tasks.

The next q lines are get v or pow v (1 ≤ v ≤ n) — the tasks described above.

Output
For each task get v print the number of rooms in the subtree of v, in which the light is turned on.

Example
inputCopy
4
1 1 1
1 0 0 1
9
get 1
get 2
get 3
get 4
pow 1
get 1
get 2
get 3
get 4
outputCopy
2
0
0
1
2
1
1
0
Note

The tree before the task pow 1.

The tree after the task pow 1.

题意:给出一棵树初始的节点值,给出两种操作,一种为子树异或1,另一种为统计子树中一的个数

题解:  可以用dfs序+线段树解决,异或标记可以通过tag[x]^=1来进行传递,每次更改相当于将区间内所有的1改为0,所有的0改为1,这样相当于把sum改为size-sum,可以O(1)实现

代码如下:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; struct node
{
int l,r,lazy,sum;
} tr[]; vector<int> g[];
int id[],size[],c[],w[],tot; void push_up(int root)
{
tr[root].sum=tr[lson].sum+tr[rson].sum;
} void push_down(int root)
{
int mid=(tr[root].l+tr[root].r)>>;
tr[lson].sum=(mid-tr[root].l+)-tr[lson].sum;
tr[lson].lazy=^tr[lson].lazy;
tr[rson].sum=(tr[root].r-mid)-tr[rson].sum;
tr[rson].lazy=^tr[rson].lazy;
tr[root].lazy=;
} void build(int root,int l,int r)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
tr[root].sum=w[l];
return ;
}
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)>>;
build(lson,l,mid);
build(rson,mid+,r);
push_up(root);
} void update(int root,int l,int r,int val)
{
if(tr[root].l==l&&tr[root].r==r)
{
tr[root].sum=(tr[root].r-tr[root].l+)-tr[root].sum;
tr[root].lazy=tr[root].lazy^;
return ;
}
if(tr[root].lazy)
{
push_down(root);
}
int mid=(tr[root].l+tr[root].r)>>;
if(l>mid)
{
update(rson,l,r,val);
}
else
{
if(mid>=r)
{
update(lson,l,r,val);
}
else
{
update(lson,l,mid,val);
update(rson,mid+,r,val);
}
}
push_up(root);
} int query(int root,int l,int r)
{
if(tr[root].l==l&&tr[root].r==r)
{
return tr[root].sum;
}
if(tr[root].lazy)
{
push_down(root);
}
int mid=(tr[root].l+tr[root].r)>>;
if(mid<l)
{
return query(rson,l,r);
}
else
{
if(mid>=r)
{
return query(lson,l,r);
}
else
{
return query(lson,l,mid)+query(rson,mid+,r);
}
}
} void dfs(int now,int f)
{
id[now]=++tot;
w[tot]=c[now];
size[now]=;
for(int i=; i<g[now].size(); i++)
{
if(g[now][i]==f)
{
continue;
}
dfs(g[now][i],now);
size[now]+=size[g[now][i]];
}
} void sub_update(int u,int val)
{
update(,id[u],id[u]+size[u]-,val);
} int sub_query(int u)
{
return query(,id[u],id[u]+size[u]-);
} int main()
{
int n,m;
scanf("%d",&n);
for(int i=; i<=n; i++)
{
int to;
scanf("%d",&to);
g[to].push_back(i);
g[i].push_back(to);
}
for(int i=; i<=n; i++)
{
scanf("%d",&c[i]);
}
dfs(,);
build(,,n);
scanf("%d",&m);
char s[];
int val;
for(int i=; i<=m; i++)
{
scanf("\n%s %d",s,&val);
if(s[]=='g')
{
printf("%d\n",sub_query(val));
}
else
{
sub_update(val,);
}
}
}

CodeForces 877E Danil and a Part-time Job(dfs序+线段树)的更多相关文章

  1. Codeforces 877E Danil and a Part-time Job(dfs序 + 线段树)

    题目链接   Danil and a Part-time Job 题意    给出一系列询问或者修改操作 $pow$ $x$表示把以$x$为根的子树的所有结点的状态取反($0$变$1$,$1$变$0$ ...

  2. Codeforces 877E - Danil and a Part-time Job(dfs序+线段树)

    877E - Danil and a Part-time Job 思路:dfs序+线段树 dfs序:http://blog.csdn.net/qq_24489717/article/details/5 ...

  3. Codeforces Round #225 (Div. 2) E. Propagating tree dfs序+-线段树

    题目链接:点击传送 E. Propagating tree time limit per test 2 seconds memory limit per test 256 megabytes inpu ...

  4. CodeForces 877E DFS序+线段树

    CodeForces 877E DFS序+线段树 题意 就是树上有n个点,然后每个点都有一盏灯,给出初始的状态,1表示亮,0表示不亮,然后有两种操作,第一种是get x,表示你需要输出x的子树和x本身 ...

  5. Codeforces Round #442 (Div. 2)A,B,C,D,E(STL,dp,贪心,bfs,dfs序+线段树)

    A. Alex and broken contest time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  6. Codeforces 838B - Diverging Directions - [DFS序+线段树]

    题目链接:http://codeforces.com/problemset/problem/838/B You are given a directed weighted graph with n n ...

  7. Educational Codeforces Round 6 E dfs序+线段树

    题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...

  8. Codeforces 343D Water Tree(DFS序 + 线段树)

    题目大概说给一棵树,进行以下3个操作:把某结点为根的子树中各个结点值设为1.把某结点以及其各个祖先值设为0.询问某结点的值. 对于第一个操作就是经典的DFS序+线段树了.而对于第二个操作,考虑再维护一 ...

  9. Codeforces 620E New Year Tree(DFS序 + 线段树)

    题目大概说给一棵树,树上结点都有颜色(1到60),进行下面两个操作:把某结点为根的子树染成某一颜色.询问某结点为根的子树有多少种颜色. 子树,显然DFS序,把子树结点映射到连续的区间.而注意到颜色60 ...

随机推荐

  1. 浅析Web Services

    Web Services 可使您的应用程序成为 Web 应用程序. Web Services 通过 Web 进行发布.查找和使用. 1.什么是Web Services? Web Services 是应 ...

  2. 小酌Jmeter4.0新版本特性

    1.  首先下载打开jmeter4.0,说一个能感受到的视觉变化,如图, 黑色界面,不少朋友认为做技术黑色的东西看起来高上大一点,虽然这个观念有点肤浅,但似乎也有点道理,毕竟还是有不少朋友热衷于lin ...

  3. centos 6.3 kickstart 装机卡在 unsupported hardware detected 页面

    起因 最近厂里一批 dell 新机器 centos 6.3 装机卡在 Unsupported Hardware Detected 页面,要人肉点击 OK 才能继续装机: Unsupported Har ...

  4. jQuery之事件和动画

    1.加载DOM $(document).ready(function(){ }) 简写形式: $(function(){ }) 事件绑定: 合成事件 事件冒泡 移除事件 JQuery中的动画 show ...

  5. C# 本地文件夹上传至网络服务器中(待续)

    一.文件的上传参考 思想,C#FTP上传 /// <summary> /// 上传 /// </summary> /// <param name="filena ...

  6. [转] C#-using用法详解

    转载自 WanderOCN的文章 C#-using用法详解 using 关键字有两个主要用途: (一).作为指令,用于为命名空间创建别名或导入其他命名空间中定义的类型. (二).作为语句,用于定义一个 ...

  7. iOS 上的蓝牙框架 - Core Bluetooth for iOS

    原文: Core Bluetooth for iOS 6 Core Bluetooth 是在iOS5首次引入的,它允许iOS设备可以使用健康,运动,安全,自动化,娱乐,附近等外设数据.在iOS 6 中 ...

  8. spring注解扫描组件注册

    最近对单点系统进行微服务拆分,被各个springboot的组件注册搞得云里雾里的.(有的是通过springboot的自动配置进IOC容器的,有的是自己添加构造方法添加进IOC容器.)决定抽时间将spr ...

  9. Activiti 整合的小插曲

    虽然是令人头痛的小插曲,真不令人省心.2年不用它又忘了怎么配,这次一定记录下来,呵呵哒. 1.下载及运行设计器 官网下载源码压缩包,解压后找到设计器目录:Activiti-activiti-5.22. ...

  10. Linux的kickstart安装详解

    Linux的kickstart安装详解 一.什么是kickstart? kickstart安装是redhat开创的按照你设计好的方式全自动安装系统的方式.安装方式可以分为光盘.硬盘.和网络.此文将以网 ...