【BZOJ】3173: [Tjoi2013]最长上升子序列(树状数组)
【题意】给定ai,将1~n从小到大插入到第ai个数字之后,求每次插入后的LIS长度。
【算法】树状数组||平衡树
【题解】
这是树状数组的一个用法:O(n log n)寻找前缀和为k的最小位置。(当数列中只有0和1时,转化为求对应排名的数字,就是简单代替平衡树)
根据树状数组的二进制分组规律,从大到小进行倍增,可以发现每次需要加的Σa[i],i∈(now,now+(1<<i)]刚好就是c[now+(1<<i)]。
文字表述就是,跳跃到的位置的c[]刚好表示中间跳跃的数字和,这是树状数组二进制分组规律的特殊性质。
还需要注意的是,实际上需要寻找前缀和<k的最大位置,最后+1。(否则会被目标数字后面的0干扰)
利用上述的方法,初始树状数组全部置为1,然后从n到1倒着寻找并删除,就可以得到每个数字在最终序列中的位置。
这道题由于从小到大插入,可以发现将所有数字全部插入也不会破坏过程中需要的LIS(只会在最后增长)。
那么第i个答案就是以数字1~i结尾的LIS的最长长度。
所以令f[i]表示最终序列中以数字 i 结尾的LIS,则第i个答案就是min(f[j]),j=1~i。(是数字i,不是第i个位置)
求解f[i]只需在O(n log n)求解整个最终序列的LIS的过程中求出即可。
总复杂度O(n log n)。
最后,代码中运用的线性构造树状数组,原理十分简单。
首先要求1~n都有数字(0也行),然后每个数加到自身c[i]+=a[i],再贡献一下父亲c[i+lowbit(i)]+=c[i]就可以了。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
#define lowbit(x) (x&-x)
using namespace std;
const int maxn=;
int a[maxn],b[maxn],c[maxn],g[maxn],anss[maxn],n;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
void insert(int x,int k){for(int i=x;i<=n;i+=lowbit(i))c[i]+=k;}
int find(int x){
int now=,ans=;
for(int i=;i>=;i--){
now+=(<<i);
if(now<n&&ans+c[now]<x)ans+=c[now];//< near
else now-=(<<i);
}
now++;
insert(now,-);
return now;
}
int max(int a,int b){return a<b?b:a;}
int main(){
n=read();
for(int i=;i<=n;i++){
a[i]=read();
c[i]++;c[i+lowbit(i)]+=c[i];
}
for(int i=n;i>=;i--)b[find(a[i]+)]=i;
int m=;
for(int i=;i<=n;i++){
int s=lower_bound(g+,g+m+,b[i])-g;
if(s>m)g[++m]=b[i];else g[s]=b[i];
anss[b[i]]=s;
}
for(int i=;i<=n;i++){
anss[i]=max(anss[i-],anss[i]);
printf("%d\n",anss[i]);
}
return ;
}
补充平衡树写法(fhq-treap)。
每个点记录以这个点结尾的LIS,然后插入平衡树中,平衡树维护区间max值。
怎么得到以每个点结尾的LIS?因为当前加入的点不可能改变之前的点的LIS,所以只需要区间查询该点插入位置之前的max+1就是以这个点结尾的LIS。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cctype>
using namespace std;
const int maxn=;
struct cyc{int l,r,rnd,num,mx,sz;}t[maxn];
int root,n;
int read(){
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
void up(int k){
t[k].sz=t[t[k].l].sz+t[t[k].r].sz+;
t[k].mx=max(t[k].num,max(t[t[k].l].mx,t[t[k].r].mx));
}
void split(int k,int &l,int &r,int x){
if(!k)return void(l=r=);
if(x<t[t[k].l].sz+){
r=k;
split(t[k].l,l,t[k].l,x);
}
else{
l=k;
split(t[k].r,t[k].r,r,x-t[t[k].l].sz-);
}
up(k);
}
int merge(int a,int b){
if(!a||!b)return a^b;
if(t[a].rnd<t[b].rnd){
t[a].r=merge(t[a].r,b);
up(a);
return a;
}
else{
t[b].l=merge(a,t[b].l);
up(b);
return b;
}
}
void insert(int k,int x){
int a,b;
split(root,a,b,x);
t[k]=(cyc){,,rand(),t[a].mx+,t[a].mx+,};
root=merge(a,k);
root=merge(root,b);
printf("%d\n",t[root].mx);
}
int main(){
n=read();root=;
for(int i=;i<=n;i++)insert(i,read());
return ;
}
【BZOJ】3173: [Tjoi2013]最长上升子序列(树状数组)的更多相关文章
- bzoj3173: [Tjoi2013]最长上升子序列(树状数组+二分倒推)
3173: [Tjoi2013]最长上升子序列 题目:传送门 题解: 好题! 怎么说吧...是应该扇死自己...看错了两次题: 每次加一个数的时候,如果当前位置有数了,是要加到那个数的前面,而不是直 ...
- Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1183 Solved: 610[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1524 Solved: 797[Submit][St ...
- BZOJ 3173: [Tjoi2013]最长上升子序列( BST + LIS )
因为是从1~n插入的, 慢插入的对之前的没有影响, 所以我们可以用平衡树维护, 弄出最后的序列然后跑LIS就OK了 O(nlogn) --------------------------------- ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 [splay DP]
3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1613 Solved: 839[Submit][St ...
- BZOJ 3173 [Tjoi2013] 最长上升子序列 解题报告
这个题感觉比较简单,但却比较容易想残.. 我不会用树状数组求这个原排列,于是我只好用线段树...毕竟 Gromah 果弱马. 我们可以直接依次求出原排列的元素,每次找到最小并且最靠右的那个元素,假设这 ...
- bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)
[Tjoi2013]最长上升子序列 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2213 Solved: 1119[Submit][Status] ...
- BZOJ 3173: [Tjoi2013]最长上升子序列 (线段树+BIT)
先用线段树预处理出每个数最终的位置.然后用BIT维护最长上升子序列就行了. 用线段树O(nlogn)O(nlogn)O(nlogn)预处理就直接倒着做,每次删去对应位置的数.具体看代码 CODE #i ...
- BZOJ 3173 最长上升子序列(树状数组+二分+线段树)
给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...
- hdu 5773 The All-purpose Zero 最长上升子序列+树状数组
题目链接:hdu 5773 The All-purpose Zero 官方题解:0可以转化成任意整数,包括负数,显然求LIS时尽量把0都放进去必定是正确的. 因此我们可以把0拿出来,对剩下的做O(nl ...
随机推荐
- android入门 — 多线程(一)
android中的一些耗时操作,例如网络请求,如果不能及时响应,就会导致主线程被阻塞,出现ANR,非常影响用户体验,所以一些耗时的操作,我们会想办法放在子线程中去完成. android的UI操作并不是 ...
- 使用ASP.NET Identity 实现WebAPI接口的Oauth身份验证
使用ASP.NET Identity 实现WebAPI接口的Oauth身份验证 目前WEB 前后端分离的开发模式比较流行,之前做过的几个小项目也都是前后分离的模式,后端使用asp.net weba ...
- oracle锁与死锁概念,阻塞产生的原因以及解决方案
锁是一种机制,一直存在:死锁是一种错误,尽量避免. 首先,要理解锁和死锁的概念: 1.锁: 定义:简单的说,锁是数据库为了保证数据的一致性而存在的一种机制,其他数据库一样有,只不过实现机制上可能大 ...
- Kafka发布订阅消息
Maven <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-cli ...
- xheditor在线编辑器在.netMVC4中的使用
在线编辑器xheditor,测试感觉不错,特把使用方法记录如下 : 先看看基本使用方法,然后用实例来操作 1.xheditor 地址 http://xheditor.com/ 2.下载最新编辑器源码 ...
- HDU4474_Yet Another Multiple Problem
题意很简单,要你用一些数字,组成一个数的倍数,且那个数最小. 比赛的时候没能做出来,深坑啊. 其实我只想说我以前就做过这种类型的题目了,诶. 题目的解法是数位宽搜. 首先把可用的数位提取出来,从小到大 ...
- action动作类的生命周期
创建:Action动作类每次请求的时候都会创建一个实例对象 销毁:当前action动作类的请求响应完后就消失了 跟javaweb中的HttpServletRequest的生命周期是一样的,struts ...
- IDEA使用switch传入String编译不通过
今天在使用IDEA的时候,用到switch分支语句,传入String参数的时候一直报错,下面是源码报错截图: 看错误提示并没有提到switch支持String类型,不过ava1.7之后就支持Strin ...
- BZOJ2743:[HEOI2012]采花——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=2743 萧薰儿是古国的公主,平时的一大爱好是采花. 今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建 ...
- 洛谷P1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n]. m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m. 第二行n个整数表 ...