51nod 1225 余数之和 数论
1225 余数之和
题目连接:
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225
Description
F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n)。其中%表示Mod,也就是余数。
例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3。
给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果即可。
Input
输入1个数N(2 <= N <= 10^12)。
Output
输出F(n) Mod 1000000007的结果
Sample Input
6
Sample Output
3
Hint
题意
题解:
余数 = n - n/i*i
很显然n/i只会有n的因子个数那么多
而且n/i在连续的一段区间内都是一样的。
这个用一个等差序列去维护i就好了
然后就可以在sqrtn的复杂度解决这道题了。
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
long long quickpow(long long m,long long n,long long k)//返回m^n%k
{
long long b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
long long mul(long long a,long long b)
{
if(a>=mod)a%=mod;
if(b>=mod)b%=mod;
a=a*b;
if(a>=mod)a%=mod;
return a;
}
int main()
{
long long n;
cin>>n;
long long ans=0;
for(int i=1;i<=sqrt(n);i++)
{
if(n/i==i)
{
long long temp=n/i*i;
ans=(ans+n-temp+mod)%mod;
continue;
}
long long r=n/i;
long long l=n/(i+1)+1;
long long num=mul(mul(mul((r+l),quickpow(2,mod-2,mod)),(r-l+1)),i);
//cout<<mul(n,r-l+1)<<" "<<num<<" "<<i<<" "<<r<<" "<<l<<endl;
ans=(ans+mul(n,r-l+1)-num+mod)%mod;
ans=(ans+n-mul(n/(n/i),(n/i))+mod)%mod;
}
cout<<ans<<endl;
}
51nod 1225 余数之和 数论的更多相关文章
- 51Nod 1225 余数之和 —— 分区枚举
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 1225 余数之和 基准时间限制:1 秒 空间限制:1 ...
- 51Nod 1225 余数之和 [整除分块]
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...
- 51nod 1225:余数之和
传送门 题意 略 分析 \(\sum_i^n(n\%i)=\sum_i^n(n-i*n/i)=n^2-\sum_i^ni*n/i\) \(=\sum r\sum_i^ni[n/i==r]\) 可以证明 ...
- 51nod 1225 余数的和 数学
1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...
- ACM学习历程—SNNUOJ1132 余数之和(数论)
Description F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n).其中%表示Mod,也就是余数.例如F(6) = 6 % 1 + 6 % ...
- bzoj 1257 余数之和 —— 数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( \sum\limits_{i=1}^{n}k\%i = \sum\limits_ ...
- 51nod - 1363 - 最小公倍数之和 - 数论
https://www.51nod.com/Challenge/Problem.html#!#problemId=1363 求\(\sum\limits_{i=1}^{n}lcm(i,n)\) 先换成 ...
- bzoj 1257 [CQOI2007]余数之和——数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 \( n\%i = n - \left \lfloor n/i \right \rfl ...
- BZOJ1257 [CQOI2007]余数之和 (数论分块)
题意: 给定n, k,求$\displaystyle \sum_{i=1}^nk\;mod\;i$ n,k<=1e9 思路: 先转化为$\displaystyle \sum_{i=1}^n(k- ...
随机推荐
- 【Git】git clone与git pull区别
从字面意思也可以理解,都是往下拉代码,git clone是克隆,git pull 是拉.但是,也有区别: 从远程服务器克隆一个一模一样的版本库到本地,复制的是整个版本库,叫做clone.(clone是 ...
- 初学Memcached安装及使用【转】
1.yum install memcached安装memecached 2.chkconfig memcached on设置memcached开机启动 3.service memcached star ...
- python 异常知识点
raise from python 在3.0 之后引入了raise from 表达式: raise exception from otherexception 当使用该语法时,第二个表达式指定了另一个 ...
- 当while read line 遇到 ssh
问题:while read line 中使用ssh只能读取一行? #!/bin/sh while read line do echo $line ssh root@$line "echo 1 ...
- centos 下单独安装mysql
https://www.cnblogs.com/running-mydream/p/4666094.html https://www.cnblogs.com/lzj0218/p/5724446.htm ...
- java版云笔记(九)之动态sql
SQL 首先,所谓SQL的动态和静态,是指SQL语句在何时被编译和执行,二者都是用在SQL嵌入式编程中的,这里所说的嵌入式是指将SQL语句嵌入在高级语言中,而不是针对于单片机的那种嵌入式编程. 静态S ...
- C#串口serialPort操作
现在大多数硬件设备均采用串口技术与计算机相连,因此串口的应用程序开发越来越普遍.例如,在计算机没有安装网卡的情况下,将本机上的一些信息数据 传输到另一台计算机上,那么利用串口通信就可以实现.运行本程序 ...
- java基础13 接口(及关键字:interface、implements)
接口 1.接口的定义格式 interface 接口名{ } interface :接口的关键字 implements:实现接口的关键字 2.接口的作用 1.程序的解耦.(低耦合) 2.定 ...
- Model Binder
上面需检测id是否为null 如果未提供id值或id值类型不匹配,则使用默认值.但仍需校验值是否超出范围
- poj1753 Flip Game(BFS+位压缩)
题目链接 http://poj.org/problem?id=1753 题意 一个棋盘上有16个格子,按4×4排列,每个格子有两面,两面的颜色分别为黑色和白色,游戏的每一轮选择一个格子翻动,翻动该格子 ...