bzoj 1008 组合计数
正难则反
前面定后面就定->枚举开头
/**************************************************************
Problem: 1008
User: idy002
Language: C++
Result: Accepted
Time:0 ms
Memory:804 kb
****************************************************************/ #include <cstdio>
#define M 100003 typedef long long lng; lng n, m; lng mpow( lng a, lng b ) {
a %= M;
lng rt;
for( rt=; b; b>>=,a=(a*a)%M )
if( b& ) rt=(rt*a)%M;
return rt;
} int main() {
scanf( "%lld%lld", &m, &n );
lng ans = mpow( m, n ) - ((m%M)*(mpow( m-, n- )%M))%M;
ans = (ans%M+M)%M;
printf( "%lld\n", ans );
}
bzoj 1008 组合计数的更多相关文章
- [Bzoj1008][HNOI2008]越狱(组合计数)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 组合计数的简单题,可能越狱的方案数等于总方案数-不可能越狱的方案数,则: 总方案数 ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)
[BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...
随机推荐
- 记一次诡异的bug调试——————关于JDK1.7和JDK1.8中HashSet的hash(key)算法的区别
现象: 测试提了一个bug,我完全复现不了,但是最吊诡的是在其他人的机器上都可以复现.起初以为是SVN合并后出现的冲突,后来经过对比法排查: step 1: 我本地开两个jetty,一个跑合并之前的版 ...
- 爬虫实战--利用Scrapy爬取知乎用户信息
思路: 主要逻辑图:
- npm的常用命令
npm install <name>安装nodejs的依赖包 例如npm install express 就会默认安装express的最新版本,也可以通过在后面加版本号的方式安装指定版本, ...
- C - A New Function (整除分块 + 玄学优化)
题目链接:https://cn.vjudge.net/contest/270608#problem/C 题目大意:给你一个n,让你求从1->n中间每个数的因子之和(每个数在求因子的过程中不包括本 ...
- hdu 2119 Matrix(二分匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2119 Matrix Time Limit: 5000/1000 MS (Java/Others) ...
- phpmywind调用方法大全
头部文件调用 <?php require_once('header.php'); ?> 底部文件调用 <?php require_once('footer.php'); ?> ...
- Java从零到企业级电商项目实战
欢迎关注我的微信公众号:"Java面试通关手册"(坚持原创,分享各种Java学习资源,面试题,优质文章,以及企业级Java实战项目回复关键字免费领取)回复关键字:"电商项 ...
- Python标准库笔记(5) — sched模块
事件调度 sched模块内容很简单,只定义了一个类.它用来最为一个通用的事件调度模块. class sched.scheduler(timefunc, delayfunc)这个类定义了调度事件的通用接 ...
- 调用HTMLTestRunner生产的报告内容为空解决办法
开始代码如下,生成报告内容为空: #coding=utf-8 import unittest,time,reimport requestsimport jsonimport HTMLTestRunne ...
- u-boot启动第二阶段以及界面命令分析
u-boot第一阶段完成了一些平台相关的硬件的配置,第一阶段所做的事情也是为第二阶段的准备,我们知道在第一阶段最后时搭建好C运行环境,之后调用了start_armboot(),那么很显然第二阶段从st ...