正难则反

前面定后面就定->枚举开头

 /**************************************************************
Problem: 1008
User: idy002
Language: C++
Result: Accepted
Time:0 ms
Memory:804 kb
****************************************************************/ #include <cstdio>
#define M 100003 typedef long long lng; lng n, m; lng mpow( lng a, lng b ) {
a %= M;
lng rt;
for( rt=; b; b>>=,a=(a*a)%M )
if( b& ) rt=(rt*a)%M;
return rt;
} int main() {
scanf( "%lld%lld", &m, &n );
lng ans = mpow( m, n ) - ((m%M)*(mpow( m-, n- )%M))%M;
ans = (ans%M+M)%M;
printf( "%lld\n", ans );
}

bzoj 1008 组合计数的更多相关文章

  1. [Bzoj1008][HNOI2008]越狱(组合计数)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 组合计数的简单题,可能越狱的方案数等于总方案数-不可能越狱的方案数,则: 总方案数 ...

  2. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

  3. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  4. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  5. bzoj 1004 Cards 组合计数

    这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...

  6. 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)

    [BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...

  7. 【BZOJ5305】[HAOI2018]苹果树(组合计数)

    [BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...

  8. 【BZOJ3142】[HNOI2013]数列(组合计数)

    [BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...

  9. 【BZOJ4005】[JLOI2015] 骗我呢(容斥,组合计数)

    [BZOJ4005][JLOI2015] 骗我呢(容斥,组合计数) 题面 BZOJ 洛谷 题解 lalaxu #include<iostream> using namespace std; ...

随机推荐

  1. 去掉input获取focus时的边框

    贴图,问题如下: 尽管已经设置输入框的border为none,当输入框focus时扔会出现浏览器自带的边框 解决方法,添加如下样式即可,.fs_input为输入框样式 ---------------- ...

  2. supervisor之启动rabbitmq报错原因

    前言 今天重启了服务器,发现supervisor管理的rabbitmq的进程居然启动失败了,查看日志发现老是报错,记录一下解决的办法. 报错:erlexec:HOME must be set 找了网上 ...

  3. SurfaceFlinger 讲解

    SurfaceFlinger是Android multimedia的一个部分,在Android 的实现中它是一个service,提供系统 范围内的surface composer功能,它能够将各种应用 ...

  4. ubuntu12.04 svn ssl错误

    1,ubuntu12.04 svn ssl错误提示: OPTIONS of '<url>': SSL handshake failed: SSL error: Key usage viol ...

  5. Machine Learning系列--TF-IDF模型的概率解释

    信息检索概述 信息检索是当前应用十分广泛的一种技术,论文检索.搜索引擎都属于信息检索的范畴.通常,人们把信息检索问题抽象为:在文档集合D上,对于由关键词w[1] ... w[k]组成的查询串q,返回一 ...

  6. Guava cache功能简介(转)

    原文链接:http://ifeve.com/google-guava-cachesexplained/ 范例 LoadingCache<Key, Graph> graphs = Cache ...

  7. sshd_config OpenSSH SSH 进程配置文件配置说明

    名称 sshd_config – OpenSSH SSH 服务器守护进程配置文件 大纲 /etc/ssh/sshd_config 描述sshd 默认从 /etc/ssh/sshd_config 文件( ...

  8. Java学习(一)Scanner报错java.util.NoSuchElementException

    我在一个方法A中使用了Scanner的 Scanner input=new Scanner(System.in),随后又将其关闭了,因为Eclipse里面你若不关闭,他会有一个warning:Reso ...

  9. Java容器---Collection接口中的共有方法

    1.Collection 接口 (1)Collection的超级接口是Iterable (2)Collection常用的子对象有:Map.List.Set.Queue. 右图中实现黑框的ArrayLi ...

  10. hive的窗口函数ntile、row_number、rank

    一.ntile 序列函数不支持window子句 数据准备: cookie1,--, cookie1,--, cookie1,--, cookie1,--, cookie1,--, cookie1,-- ...