hdu 4819 二维线段树模板
/*
HDU 4819 Mosaic
题意:查询某个矩形内的最大最小值,
修改矩形内某点的值为该矩形(Mi+MA)/2;
二维线段树模板:
区间最值,单点更新。
*/
#include<bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
const int MAXN = ;
int N, Q;
struct Nodey
{
int l, r;
int Max, Min;
};
int locx[MAXN], locy[MAXN];
struct Nodex
{
int l, r;
Nodey sty[MAXN * ];
void build(int i, int _l, int _r)
{
sty[i].l = _l;
sty[i].r = _r;
sty[i].Max = -INF;
sty[i].Min = INF;
if(_l == _r)
{
locy[_l] = i;
return;
}
int mid = (_l + _r) / ;
build(i << , _l, mid);
build((i << ) | , mid + , _r);
}
int queryMin(int i, int _l, int _r)
{
if(sty[i].l == _l && sty[i].r == _r)
return sty[i].Min;
int mid = (sty[i].l + sty[i].r) / ;
if(_r <= mid)
return queryMin(i << , _l, _r);
else if(_l > mid)
return queryMin((i << ) | , _l, _r);
else
return min(queryMin(i << , _l, mid), queryMin((i << ) | , mid + , _r));
}
int queryMax(int i, int _l, int _r)
{
if(sty[i].l == _l && sty[i].r == _r)
return sty[i].Max;
int mid = (sty[i].l + sty[i].r) / ;
if(_r <= mid)
return queryMax(i << , _l, _r);
else if(_l > mid)
return queryMax((i << ) | , _l, _r);
else
return max(queryMax(i << , _l, mid), queryMax((i << ) | , mid + , _r));
}
} stx[MAXN * ];
void build(int i, int l, int r)
{
stx[i].l = l;
stx[i].r = r;
stx[i].build(, , N);
if(l == r)
{
locx[l] = i;
return;
}
int mid = (l + r) / ;
build(i << , l, mid);
build((i << ) | , mid + , r);
}
//单点修改值
void Modify(int x, int y, int val)
{
int tx = locx[x];
int ty = locy[y];
stx[tx].sty[ty].Min = stx[tx].sty[ty].Max = val;
for(int i = tx; i; i >>= )
for(int j = ty; j; j >>= )
{
if(i == tx && j == ty)continue;
if(j == ty)
{
stx[i].sty[j].Min = min(stx[i << ].sty[j].Min, stx[(i << ) | ].sty[j].Min);
stx[i].sty[j].Max = max(stx[i << ].sty[j].Max, stx[(i << ) | ].sty[j].Max);
}
else
{
stx[i].sty[j].Min = min(stx[i].sty[j << ].Min, stx[i].sty[(j << ) | ].Min);
stx[i].sty[j].Max = max(stx[i].sty[j << ].Max, stx[i].sty[(j << ) | ].Max);
}
}
} int queryMin(int i, int x1, int x2, int y1, int y2)
{
if(stx[i].l == x1 && stx[i].r == x2)
return stx[i].queryMin(, y1, y2);
int mid = (stx[i].l + stx[i].r) / ;
if(x2 <= mid)
return queryMin(i << , x1, x2, y1, y2);
else if(x1 > mid)
return queryMin((i << ) | , x1, x2, y1, y2);
else
return min(queryMin(i << , x1, mid, y1, y2), queryMin((i << ) | , mid + , x2, y1, y2));
}
int queryMax(int i, int x1, int x2, int y1, int y2)
{
if(stx[i].l == x1 && stx[i].r == x2)
return stx[i].queryMax(, y1, y2);
int mid = (stx[i].l + stx[i].r) / ;
if(x2 <= mid)
return queryMax(i << , x1, x2, y1, y2);
else if(x1 > mid)
return queryMax((i << ) | , x1, x2, y1, y2);
else
return max(queryMax(i << , x1, mid, y1, y2), queryMax((i << ) | , mid + , x2, y1, y2));
} int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T, ic = ;
scanf("%d", &T);
while(T--)
{
printf("Case #%d:\n", ++ic);
scanf("%d", &N);
build(, , N);
for(int i = ; i <= N; i++)
for(int j = ; j <= N; j++)
{
int a;
scanf("%d", &a);
Modify(i, j, a);
}
scanf("%d", &Q);
while(Q--)
{
int x, y, L;
scanf("%d%d%d", &x, &y, &L);
int x1 = max(x - L / , );
int x2 = min(x + L / , N);
int y1 = max(y - L / , );
int y2 = min(y + L / , N);
//(x1,y1)左上角,(x2,y2)右下角
int Max = queryMax(, x1, x2, y1, y2);
int Min = queryMin(, x1, x2, y1, y2);
int t = (Max + Min) / ;
printf("%d\n", t);
Modify(x, y, t);//单点修改
}
}
return ;
}
hdu 4819 二维线段树模板的更多相关文章
- HDU 4819 二维线段树
13年长春现场赛的G题,赤裸裸的二维线段树,单点更新,区间查询 不过我是第一次写二维的,一开始写T了,原因是我没有好好利用行段,说白一点,还是相当于枚举行,然后对列进行线段树,那要你写二维线段树干嘛 ...
- Mosaic HDU 4819 二维线段树入门题
Mosaic Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others)Total S ...
- hdu1823(二维线段树模板题)
hdu1823 题意 单点更新,求二维区间最值. 分析 二维线段树模板题. 二维线段树实际上就是树套树,即每个结点都要再建一颗线段树,维护对应的信息. 一般一维线段树是切割某一可变区间直到满足所要查询 ...
- HDU 4819 Mosaic (二维线段树&区间最值)题解
思路: 二维线段树模板题,马克一下,以后当模板用 代码: #include<cstdio> #include<cmath> #include<cstring> #i ...
- HDU1832 二维线段树求最值(模板)
Luck and Love Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- Luck and Love(二维线段树)
Luck and Love Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- [hdu1823]Luck and Love(二维线段树)
解题关键:二维线段树模板题(单点修改.查询max) #include<cstdio> #include<cstring> #include<algorithm> # ...
- UVA 11297 Census ——二维线段树
[题目分析] 二维线段树模板题目. 简直就是无比的暴力.时间复杂度为两个log. 标记的更新方式比较奇特,空间复杂度为N^2. 模板题目. [代码] #include <cstdio> # ...
- HDU 4819 Mosaic(13年长春现场 二维线段树)
HDU 4819 Mosaic 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4819 题意:给定一个n*n的矩阵,每次给定一个子矩阵区域(x,y,l) ...
随机推荐
- IIC总线学习
IIC总线 IIC协议简要说明: 1.2条双向串行线,一条数据线称为SDA,一条时钟线SCL,双向半双工 2.传输的设备之间只是简单的主从关系,主机可以作为主机发送也可以作为主机接收,任何时候只能由一 ...
- MDI窗体简单方法(调用,闪屏)
调用方式: RibbonForm mdishow = new RibbonForm(); //实例化 midshow.MdiParent = this; //设置在主窗体,以MDI的方式显示,关键属性 ...
- POJ - 1330 Nearest Common Ancestors 最近公共祖先+链式前向星 模板题
A rooted tree is a well-known data structure in computer science and engineering. An example is show ...
- 【leetcode 简单】第二十七题 二叉树的最小深度
给定一个二叉树,找出其最小深度. 最小深度是从根节点到最近叶子节点的最短路径上的节点数量. 说明: 叶子节点是指没有子节点的节点. 示例: 给定二叉树 [3,9,20,null,null,15,7], ...
- Django之Form组件验证
今天来谈谈Django的Form组件操作 Django中的Form一般有两种功能: ·输入html ·验证用户输入 Form验证流程 ·定义规则(是一个类) ·前端把数据提交过来 ·匹配规则 · ...
- 一款已上市MMO手游地图同步方案总结
1. 客户端地图格子的相关知识 在2.5D的MMO游戏里,角色是通过3D的方式渲染,2D的地图是通过2D的方式显示,所以在客户端一般会有三个坐标系: a) 3D坐标系:所有需要3D渲染的角色和光效,都 ...
- React Native 与 夜神模拟器的绑定
之前一直用真机去调试, 每回更新一次都需要手动摇晃手机后才能reload JS, OMG,太麻烦了. 后来寻思模拟器网上推荐用Geny...什么的模拟器,但是那个模拟器还需要VBox一起用. 有点麻烦 ...
- fileIO和OS操作文件和目录
1.FileIO操作文件 # 文件IO,读取文件和创建文件 # 1.读取键盘输入 x=input("please input number") print("您输入的是& ...
- webgote的例子 数据库与sql注入的相关联系(1)
大家好我是时光凉春衫薄 之前将讲的sql注入有点随便了我同事也觉得有些地方看不懂,往后的几天我尽量写的细一点.尽可能让大家能看懂.(新手出道大佬多多指教.欢迎评论批评.) 数据库与sql注入的相关联系 ...
- inet_addr_onlink
/* 根据指定设备的ip配置块,判断地址a,b是否在同一子网 */ /* --邻居项要求,在同一子网中的两个设备, 至少有一个接口有相同的子网配置, --也就是说对端的in_dev->ifa_l ...