Training little cats

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 11787 Accepted: 2892

Description

Facer’s pet cat just gave birth to a brood of little cats. Having considered the health of those lovely cats, Facer decides to make the cats to do some exercises. Facer has well designed a set of moves for his cats. He is now asking you to supervise the cats to do his exercises. Facer’s great exercise for cats contains three different moves:

g i : Let the ith cat take a peanut.

e i : Let the ith cat eat all peanuts it have.

s i j : Let the ith cat and jth cat exchange their peanuts.

All the cats perform a sequence of these moves and must repeat it m times! Poor cats! Only Facer can come up with such embarrassing idea.

You have to determine the final number of peanuts each cat have, and directly give them the exact quantity in order to save them.

Input

The input file consists of multiple test cases, ending with three zeroes “0 0 0”. For each test case, three integers n, m and k are given firstly, where n is the number of cats and k is the length of the move sequence. The following k lines describe the sequence.

(m≤1,000,000,000, n≤100, k≤100)

Output

For each test case, output n numbers in a single line, representing the numbers of peanuts the cats have.

Sample Input

3 1 6

g 1

g 2

g 2

s 1 2

g 3

e 2

0 0 0

Sample Output

2 0 1

这个也是构造矩阵,



这里三个操作可以合并的,也就是不用每次都构造一个新的矩阵,具体见代码

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <algorithm>
#include <math.h> using namespace std;
typedef long long int LL;
int n,k;
LL mod;
struct Node
{
LL a[105][105];
};
char m[10];
Node mutiply(Node a,Node b)
{
Node c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=n+1;i++)
{
for(int j=1;j<=n+1;j++)
{
if(!a.a[i][j]) continue;
for(int k=1;k<=n+1;k++)
c.a[i][k]+=a.a[i][j]*b.a[j][k];
}
}
return c;
}
Node get(Node a,LL x)
{
Node c;
memset(c.a,0,sizeof(c.a));
for(int i=1;i<=n+1;i++)
c.a[i][i]=1;
for(x;x;x>>=1)
{
if(x&1) c=mutiply(c,a);
a=mutiply(a,a);
}
return c;
}
int main()
{
int x;int y;
while(scanf("%d%lld%d",&n,&mod,&k)!=EOF)
{
if(n==0&&mod==0&&k==0)
break;
Node a;
memset(a.a,0,sizeof(a.a));
for(int i=1;i<=n+1;i++)
a.a[i][i]=1;
for(int i=1;i<=k;i++)
{ scanf("%s",m);
if(m[0]=='g')
{
scanf("%d",&x);
a.a[x][n+1]++;
}
else if(m[0]=='e')
{
scanf("%d",&x);
for(int j=1;j<=n+1;j++)
a.a[x][j]=0;
}
else if(m[0]=='s')
{
scanf("%d%d",&x,&y);
for(int j=1;j<=n+1;j++)
swap(a.a[x][j],a.a[y][j]);
}
}
a=get(a,mod);
Node c;
memset(c.a,0,sizeof(c.a));
c.a[n+1][1]=1;
a=mutiply(a,c);
for(int i=1;i<=n;i++)
printf("%lld ",a.a[i][1]);
printf("\n");
}
return 0;
}

POJ 3735 Training little cats(矩阵快速幂)的更多相关文章

  1. poj 3735 Training little cats 矩阵快速幂+稀疏矩阵乘法优化

    题目链接 题意:有n个猫,开始的时候每个猫都没有坚果,进行k次操作,g x表示给第x个猫一个坚果,e x表示第x个猫吃掉所有坚果,s x y表示第x个猫和第y个猫交换所有坚果,将k次操作重复进行m轮, ...

  2. POJ 3735 Training little cats<矩阵快速幂/稀疏矩阵的优化>

    Training little cats Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13488   Accepted:  ...

  3. POJ 3735 Training little cats 矩阵快速幂

    http://poj.org/problem?id=3735 给定一串操作,要这个操作连续执行m次后,最后剩下的值. 记矩阵T为一次操作后的值,那么T^m就是执行m次的值了.(其实这个还不太理解,但是 ...

  4. poj 3753 Training little cats_矩阵快速幂

    题意: 通过各种操作进行,给第i只猫花生,第i只猫吃光花生,第i只猫和第j只猫互换花生,问n次循环操作后结果是什么 很明显是构建个矩阵,然后矩阵相乘就好了 #include <iostream& ...

  5. 矩阵快速幂 POJ 3735 Training little cats

    题目传送门 /* 题意:k次操作,g:i猫+1, e:i猫eat,s:swap 矩阵快速幂:写个转置矩阵,将k次操作写在第0行,定义A = {1,0, 0, 0...}除了第一个外其他是猫的初始值 自 ...

  6. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  7. poj 3735 Training little cats(矩阵快速幂,模版更权威,这题数据很坑)

    题目 矩阵快速幂,这里的模版就是计算A^n的,A为矩阵. 之前的矩阵快速幂貌似还是个更通用一些. 下面的题目解释来自 我只想做一个努力的人 @@@请注意 ,单位矩阵最初构造 行和列都要是(猫咪数+1) ...

  8. Training little cats_矩阵快速幂

    Description Facer's pet cat just gave birth to a brood of little cats. Having considered the health ...

  9. POJ 3233 Matrix Power Series 矩阵快速幂+二分求和

    矩阵快速幂,请参照模板 http://www.cnblogs.com/pach/p/5978475.html 直接sum=A+A2+A3...+Ak这样累加肯定会超时,但是 sum=A+A2+...+ ...

  10. POJ 3233 Matrix Power Series 矩阵快速幂

    设S[k] = A + A^2 +````+A^k. 设矩阵T = A[1] 0 E E 这里的E为n*n单位方阵,0为n*n方阵 令A[k] = A ^ k 矩阵B[k] = A[k+1] S[k] ...

随机推荐

  1. 多国语言解决方案gnu.gettext + poedit

    1.工具简介 1.1.关于i18n i18n其来源是英文单词 internationalization的首末字符i和n,18为中间的字符数是“国际化”的简称. i10n为资源本地化,全称为Locali ...

  2. atitit.判断时间重叠方法总结 java c++ c#.net js php

    atitit.判断时间重叠方法总结 java c++ c#.net  js php 1. 判断时间重叠具体流程思路 1 2. 重叠算法 实际上就是日期集合跟个时间集合的的交集(乘法算法) 1 3. 代 ...

  3. 最新的Zynq资料整理

    1.Zynq修炼秘籍 基于ZYNQ的FPGA基础入门 基于ZYNQ的Soc入门基础 基于ZYNQ的裸机应用开发 基于ZYNQ硬件的LINUX开发 基于ZYNQ的HLS图像算法设计 基于ZYNQ的图像处 ...

  4. Typeface-为自定义字体提供字体内存缓存

    Android 上自定义字体的代码一般如下: TextView textview = (TextView) findViewById(R.id.your_referenced_textview); / ...

  5. 监控 Linux 性能的 18 个命令行工具(转)

    http://www.oschina.net/translate/command-line-tools-to-monitor-linux-performance?cmp&p=1# 1.Top- ...

  6. tableview 与 tableview cell

    1.tableview cell: import Foundationimport UIKit class CjwtCell: UITableViewCell { @IBOutlet var lb_c ...

  7. 拿与不拿的dfs

    在n个物品中拿k个,使得花费恰好为m. 典型的dfs,对每一个物品,可以选择拿与不拿,然后在判断下一个物品. 失败的dfs: 代码没有保存,只重写一下dfs函数的关键部分: ;i<n;i++) ...

  8. 为女票写的计算工作时间的SQL(二)

    将非工作时间.非工作日.节假日去掉,计算工作时间,如下: 一.实现 -- 节假日表 CREATE TABLE Holiday ( id ) NOT NULL, DATE ), flag ) , PRI ...

  9. jquery清空textarea等输入框

    转载自:http://blog.csdn.net/dyllove98/article/details/8870307 完整示例:http://www.keleyi.com/keleyi/phtml/c ...

  10. The 14th UESTC Programming Contest Final B - Banana Watch 预处理、前缀和

    B - Banana Watch Time Limit: 1000/1000MS (Java/Others)     Memory Limit: 262144/262144KB (Java/Other ...