Problem Description
Read the program below carefully then answer the question.
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include<iostream>
#include <cstring>
#include <cmath>
#include <algorithm>
#include<vector>

const int MAX=100000*2;
const int INF=1e9;

int main()
{
  int n,m,ans,i;
  while(scanf("%d%d",&n,&m)!=EOF)
  {
    ans=0;
    for(i=1;i<=n;i++)
    {
      if(i&1)ans=(ans*2+1)%m;
      else ans=ans*2%m;
    }
    printf("%d\n",ans);
  }
  return 0;
}

 
Input
Multi test cases,each line will contain two integers n and m. Process to end of file.
[Technical Specification]
1<=n, m <= 1000000000
 
Output
For each case,output an integer,represents the output of above program.
 
Sample Input
1 10
3 100
 
Sample Output
1
5
 
题意:给出了原程序,显然,看到内涵的递推式明显可以使用矩阵快速幂了。
思路:原递推式是当n为偶数时fn=2*f(n-1)+1 奇数时fn=2*f(n-1) 找规律得到递推式为 f(n) = *f(n-1)+*f(n-2) +*1
 
(下面是没学过线代的鶸的一点理解)
其实可以把矩阵看做一个储存多数据的容器,例如这题
运算为等式右红框分别乘以左边三个红框得到的三个值
对应的就是等式左侧的f(n),f(n-1),1。
 
化简
 #include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#define ll __int64
using namespace std; ll mod;
struct matrix
{
ll x[][];
void init()
{
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
x[i][j] = ;
}
}; matrix mul(matrix a, matrix b)
{
matrix c;
c.init();
for( int i = ; i < ; i++)
for(int j = ; j < ; j++)
{
for(int k = ; k < ; k++)
{
c.x[i][j] += a.x[i][k] * b.x[k][j];
}
c.x[i][j] %= mod;
}
return c;
}
matrix powe(matrix x, ll n)
{
matrix r;
r.init();
r.x[][] = r.x[][] = r.x[][] = ; //初始化 while(n)
{
if(n & )
r = mul(r , x);
x = mul(x , x);
n >>= ;
}
return r;
}
int main()
{ ll x, y, n, ans;
//while(~scanf("%I64d%I64d", &n, &mod))
while(cin >> n >> mod)
{
if(n == )
printf("%I64d\n", %mod);
else if(n == )
printf("%I64d\n", %mod);
else
{
matrix d;
d.init();
d.x[][] = ;
d.x[][] = ;
d.x[][] = ;
d.x[][] = ;
d.x[][] = ; d = powe(d, n - ); ans = d.x[][] * + d.x[][] * + ; //如果使用手动乘,不知为何还要再判断 matrix e;
e.init();
e.x[][] = ;
e.x[][] = ;
e.x[][] = ;
d = mul(e , d);
/*if( n % 2 ) //再判断
ans-=2;
else
ans-=1;*/
cout << d.x[][] % mod << endl;
}
}
}
 
 

HDU 4990 Reading comprehension 简单矩阵快速幂的更多相关文章

  1. HDU - 4990 Reading comprehension 【矩阵快速幂】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=4990 题意 初始的ans = 0 给出 n, m for i in 1 -> n 如果 i 为奇 ...

  2. HDU 4990 Reading comprehension(矩阵快速幂)题解

    思路: 如图找到推导公式,然后一通乱搞就好了 要开long long,否则红橙作伴 代码: #include<set> #include<cstring> #include&l ...

  3. HDU 1575 Tr A( 简单矩阵快速幂 )

    链接:传送门 思路:简单矩阵快速幂,算完 A^k 后再求一遍主对角线上的和取个模 /********************************************************** ...

  4. hdu 5667 BestCoder Round #80 矩阵快速幂

    Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536 ...

  5. hdu 1575 Tr A(矩阵快速幂,简单)

    题目 和 LightOj 1096 - nth Term  类似的线构造一个符合题意的矩阵乘法模版,然后套快速幂的模版,具体的构造矩阵我就不作图了,看着代码也能理解吧 #include<stdi ...

  6. HDU 2604 Queuing( 递推关系 + 矩阵快速幂 )

    链接:传送门 题意:一个队列是由字母 f 和 m 组成的,队列长度为 L,那么这个队列的排列数为 2^L 现在定义一个E-queue,即队列排列中是不含有 fmf or fff ,然后问长度为L的E- ...

  7. hdu 1005 Number Sequence(矩阵快速幂,找规律,模版更通用)

    题目 第一次做是看了大牛的找规律结果,如下: //显然我看了答案,循环节点是48,但是为什么是48,据说是高手打表出来的 #include<stdio.h> int main() { ], ...

  8. hdu 4686 Arc of Dream(矩阵快速幂)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意: 其中a0 = A0ai = ai-1*AX+AYb0 = B0bi = bi-1*BX+BY ...

  9. HDU 4686 Arc of Dream 矩阵快速幂,线性同余 难度:1

    http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目 ...

随机推荐

  1. QSet使用及Qt自定义类型使用QHash等算法

    版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QSet使用及Qt自定义类型使用QHash等算法     本文地址:http://techie ...

  2. JAVA字节流(读写文件)

    InputStream此抽象类是表示字节输入流的所有类的超类.需要定义 InputStream 的子类的应用程序必须始终提供返回下一个输入字节的方法. int available()返回此输入流方法的 ...

  3. Spring配置声明

    <...     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"        xmlns:p="htt ...

  4. 小程序 坐标算距离 (copy)

      var EARTH_RADIUS = 6378137.0;    //单位M    var PI = Math.PI;        function getRad(d){        retu ...

  5. 探究Android中通过继承ViewGroup自定义控件的原理

    原文地址:http://www.cnblogs.com/kross/p/3378395.html 今天断断续续的折腾了一下午到现在20:38,终于有点明白了.o(╯□╰)o 在Android开发中,我 ...

  6. TClientDataSet[5]: 读取数据

    本例用到: TClientDataSet.Fields[];          { 字段集合; 它比 FieldList 有更多功能, 如可获取嵌套字段 } TClientDataSet.FieldL ...

  7. TCP建立连接与释放连接过程中的几个问题

    TCP为何采用三次握手来建立连接,若采用两次握手可以吗,请说明理由? 不可以.采用三次握手是为了防止失效的连接请求报文段突然又传送到服务器,从而发生错误.当客户端发出的连接请求报文段由于某些原因没有及 ...

  8. HDU4497——GCD and LCM

    这个题目挺不错的,看到是通化邀请赛的题目,是一个很综合的数论题目. 是这样的,给你三个数的GCD和LCM,现在要你求出这三个数有多少种可能的情况. 对于是否存在这个问题,直接看 LCM%GCD是否为0 ...

  9. USB硬件接口相关

    1.USB 设备端的D+为何要拉一个1.5K电阻到3.3v上?(USB是5v供电,但通信的电平是3.3v,所以上拉电平为3.3v:若要上拉到5v,则上拉电阻为10k) usb有主从设备之分,主设备有: ...

  10. BZOJ3717 PA2014Pakowanie(状压dp)

    显然贪心地有尽量先往容量大的背包里放.设f[i]为i子集物品最小占用背包数,g[i]为该情况下最后一个背包的剩余容量,转移显然. #include<iostream> #include&l ...