HDU 1431 思维 基础数论
找范围内回文素数,最大到1e8,我就是要枚举回文串,再判素数,然后因为这种弱智思路死磕了很久题目。
/** @Date : 2017-09-08 15:24:43
* @FileName: HDU 1431 思维 找回文素数.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; LL pri[N];
bool vis[N];
int c = 0; void prime()
{
MMF(pri);
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0) break;
}
}
} int isk[2010]; int main()
{
prime();
//freopen("x.txt","w", stdout);
LL a, b;
while(cin >> a >> b)
{
for(int i = 0; pri[i] < 10; i++)
if(pri[i] >= a && pri[i] <= b)
printf("%lld\n", pri[i]);
priority_queue<int, vector<int>, greater<int>>q;
for(int i = 1; i < 10000; i++)
{
int flag = log10(i);
for(int k = -1; k <= 9; k++)
{
int s = i * pow(10, flag + 1);
if(k > -1)
s = s * 10 + k * pow(10, flag + 1);
int t = i;
int cnt = flag;
//cout << s << "~";;
while(t)
{
s += (t % 10) * pow(10, cnt);
t /= 10;
cnt--;
}
if(s < a || s > b)
continue;
int flag = 0;
for(int j = 0; j < c && pri[j] * pri[j] <= s; j++)
if(s % pri[j] == 0)
{
flag = 1;
break;
}
if(!flag)
q.push(s)/*,cout << s << endl*/; }
}
while(!q.empty())
{
printf("%d\n", q.top());
q.pop();
}
printf("\n");
}
return 0;
}
HDU 1431 思维 基础数论的更多相关文章
- Gcd HDU - 6545 (基础数论)
wls 有一个整数 n,他想将 1 − n 这 n 个数字分成两组,每一组至少有一个数,并且使得两组数字的和的最大公约数最大,请输出最大的最大公约数. Input 输入一行一个整数 n. 2 ≤ n ...
- Least Common Multiple (HDU - 1019) 【简单数论】【LCM】【欧几里得辗转相除法】
Least Common Multiple (HDU - 1019) [简单数论][LCM][欧几里得辗转相除法] 标签: 入门讲座题解 数论 题目描述 The least common multip ...
- HDU 1005 Number Sequence(数论)
HDU 1005 Number Sequence(数论) Problem Description: A number sequence is defined as follows:f(1) = 1, ...
- HDU 2588 思维 容斥
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$ ...
- LightOJ1214 Large Division 基础数论+同余定理
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- HDU-1576 A/B 基础数论+解题报告
HDU-1576 A/B 基础数论+解题报告 题意 求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973) (我们给定的A必能被B整除,且gcd(B,9973) = 1). 输入 数据 ...
- 七夕节 (HDU - 1215) 【简单数论】【找因数】
七夕节 (HDU - 1215) [简单数论][找因数] 标签: 入门讲座题解 数论 题目描述 七夕节那天,月老来到数字王国,他在城门上贴了一张告示,并且和数字王国的人们说:"你们想知道你们 ...
- HDU 1299 基础数论 分解
给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + ...
- HDU 1060 Leftmost Digit 基础数论
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1060 这道题运用的是数学方法. 假设S=n^n.两边同时取对数,得到lgS=nlgn.即有S=10 ...
随机推荐
- alpha冲6
队名:日不落战队 安琪(队长) 今天完成的任务 回收站前端界面. 明天的计划 查看个人信息界面. 还剩下的任务 信息修改前端界面. 设置界面. 遇到的困难 模拟机莫名其妙就崩了,调试了很久,后在队友的 ...
- lintcode-422-最后一个单词的长度
422-最后一个单词的长度 给定一个字符串, 包含大小写字母.空格' ',请返回其最后一个单词的长度. 如果不存在最后一个单词,请返回 0 . 注意事项 一个单词的界定是,由字母组成,但不包含任何的空 ...
- PAT 甲级 1083 List Grades
https://pintia.cn/problem-sets/994805342720868352/problems/994805383929905152 Given a list of N stud ...
- Mysql的表名/字段名/字段值是否区分大小写
1.MySQL默认情况下是否区分大小写,使用show Variables like '%table_names'查看lower_case_table_names的值,0代表区分,1代表不区分. 2.m ...
- python3判断字典、列表、元组为空以及字典是否存在某个key的方法
#!/usr/bin/python3 #False,0,'',[],{},()都可以视为假 m1=[] m2={} m3=() m4={"name":1,"age&quo ...
- 【HLSDK系列】服务端 UpdateClientData 函数
首先说明下,这个函数是写在 mp.dll 里的. 服务器会给每个客户端发送一些数据,其中两大数据种类就是 clientdata_t 和 entity_state_t 这里要说的是 clientdata ...
- P1939 【模板】矩阵加速(数列)
题目描述 a[1]=a[2]=a[3]=1 a[x]=a[x-3]+a[x-1] (x>3) 求a数列的第n项对1000000007(10^9+7)取余的值. 输入输出格式 输入格式: 第一行一 ...
- Linux内核分析第一周学习博客 --- 通过反汇编方式学习计算机工作过程
Linux内核分析第一周学习博客 通过反汇编方式学习计算机工作过程 总结: 通过这次对一个简单C程序的反汇编学习,我了解到计算机在实际工作工程中要涉及大量的跳转指针操作.计算机通常是顺序执行一条一条的 ...
- [NOI2008]糖果雨
bzoj1062[Noi2008]糖果雨 首先给出的颜色没有用. 估计要用数据结构.而线段难以维护. 考虑把线段变成点 T是单增的. 所以询问的时候,存在的线段都可能贡献答案. 那些线段的位置如果可以 ...
- [POJ3613] Cow Relays
link 题目大意 给你一个含有边权的无向图,问从$S$到$T$经过$N$条边的最小花费. 试题分析 我们可以很容易推导$dp$方程,$dp(k,i,j)$表示经过$k$条边从$i$到$j$的最小花费 ...