Codechef Dynamic Trees and Queries
Home » Practice(Hard) » Dynamic Trees and Queries
Problem Code: ANUDTQ
Submit
Read problems statements in Mandarin Chineseand Russian.
Given a directed tree with N nodes. You need to process M queries.
Each node has a key and a value, a node is referenced by its key. N nodes havekeys from 0 to N-1.
Root always has the key equal to 0. Queries can be of the following 4 types:
1. Given a key of a node present in the tree, append a child node to it. The new node gets the smallest never-used positive integer as its key. The value of the new node will be given in the input.
2. Given a key of a node(call it A) present in the tree. Add value to the value of all the nodes present in the subtree rooted at A.
3. Given a key of a node(call it A) present in the tree. Remove the subtree rooted at Afrom the tree.
4. Given a key of a node(call it A) present in the tree. Output the sum of values of all the nodes in subtree rooted at A.
Input is encoded:
Keys in M Queries of the input are encoded in the following way:
Let SPECIAL = 0 initially. Whenever a query of the type 4 occurs, SPECIAL is updated to the result of that query.
All the keys given in queries are encoded, in order to decode them you need to add SPECIAL to it.
That is, you are given encoded_key as input, to get key use the formula key =SPECIAL + encoded_key.
Input
First line of input has N, the number of nodes.
Second line has N integers, the values of given N nodes respectively.
Then, N-1 lines follow, each has two integers u, v. which specifies an edge from u to v.
Next line contains a single integer M, the number of queries.
Each query consists of 2 lines, First line has the the type of query, second line is as follows:
For queries 1 and 2, there are two integers, first one represents the key of a node in tree, second one represents the value.
For queries 3 and 4, there is a single integer, which represents the key of a node in tree.
Output
For each query of type 4, output the required answer.
Constraints
- 1 ≤ N ≤ 10^5
- 1 ≤ M ≤ 10^5
- 0 ≤ u < N
- 0 ≤ v < N, u is not equal to v
- All the keys in the input are valid
- If the type of the query is 3, the the key is nonzero.
- All the rest numbers in the input are in the range [-1000, 1000]
Example
Input:
2
10 20
0 1
4
4
0
1
-30 5
2
-30 1
4
-30
Output:
30
38
Explanation
Query #1
type = 4 encoded_key = 0
Initially SPECIAL = 0
key = encoded_key + SPECIAL = 0
value at 0 + value at 1 = 10 + 20 = 30 is the answer
Now SPECIAL is updated to 30
Query #2
type = 1 encoded_key = -30 value = 5
SPECIAL = 30
key = encoded_key + SPECIAL = -30 + 30 = 0
So we add a child node(with the key = 2) to the node with the key 0, the child node gets the value of 5
EDITS MADE:
Firstly, sorry for the mistake.
Old : Let SPECIAL = 0 initially. Whenever a query of the type 4 occurs, SPECIAL is increased by the result of that query.
New : Let SPECIAL = 0 initially. Whenever a query of the type 4 occurs, SPECIAL is updated to the result of that query.
题意:给出一颗由有向边构成的树,每个节点有编号、权值
操作1:给编号为A的点新增一个权值为val的叶子节点
操作2:给以编号A为根的子树权值全体+val
操作3:删除以编号为A为根的子树
操作4:询问以编号A为根的子树的权值和
碰到子树常用dfs序解决,但这题是动态增删,dfs序难以完成
所以 用splay维护括号序列 来解决子树问题
具体来说就是每加一个点,实际往splay中加一对括号
查找子树时,找到根节点的左右括号,就确定了子树范围
#include<cstdio>
#define lc ch[x][0]
#define rc ch[x][1]
#define N 401001
using namespace std;
int fa[N],ch[N][],l[N],r[N],siz[N],a[N];
int front[N],to[N],next[N],tot,cnt;
long long sum[N],tag[N],key[N],special;
int n,m;
int read()
{
int x=;int f=; char c=getchar();
while(c<''||c>'') { if(c=='-') f=-; c=getchar(); }
while(c>=''&&c<='') { x=x*+c-''; c=getchar(); }
return x*f;
}
long long read2()
{
long long x=;int f=; char c=getchar();
while(c<''||c>'') { if(c=='-') f=-; c=getchar(); }
while(c>=''&&c<='') { x=x*+c-''; c=getchar(); }
return x*f;
}
struct SPLAY
{
void up(int x)
{
siz[x]=siz[ch[x][]]+siz[ch[x][]]+;
sum[x]=sum[ch[x][]]+sum[ch[x][]]+key[x];
}
void accumu(int x,long long val)
{
key[x]+=val;
sum[x]+=val*siz[x];
tag[x]+=val;
}
void down(int x)
{
if(lc) accumu(lc,tag[x]);
if(rc) accumu(rc,tag[x]);
tag[x]=;
}
bool getson(int x)
{
return ch[fa[x]][]==x;
}
void rotate(int x)
{
int y=fa[x],z=fa[y],k=ch[y][]==x;
if(z) ch[z][ch[z][]==y]=x;
fa[x]=z;
ch[y][k]=ch[x][k^]; ch[x][k^]=y;
fa[y]=x; if(ch[y][k]) fa[ch[y][k]]=y;
up(y);
}
void splay(int x,int g=)
{
while(fa[x]!=g)
{
int y=fa[x],z=fa[y];
if(tag[z]) down(z);
if(tag[y]) down(y);
if(tag[x]) down(x);
if(z!=g) rotate(getson(x)==getson(y) ? y : x);
rotate(x);
up(x);
}
}
int find_pre(int y)
{
splay(y);
int x=ch[y][];
while(rc) x=rc;
return x;
}
int find_suf(int y)
{
splay(y);
int x=ch[y][];
while(lc) x=lc;
return x;
}
void insert(int x,int f,int val)
{
int pre=l[f],suf=find_suf(l[f]);
splay(pre); splay(suf,pre);
l[x]=++tot; r[x]=++tot;
ch[suf][]=l[x]; fa[l[x]]=suf;
ch[l[x]][]=r[x]; fa[r[x]]=l[x];
siz[l[x]]=siz[r[x]]=;
sum[l[x]]=key[l[x]]=val;
sum[r[x]]=key[r[x]]=val;
up(l[x]); up(suf); up(pre);
}
void add(int x,int val)
{
int pre=find_pre(l[x]);
int suf=find_suf(r[x]);
splay(pre); splay(suf,pre);
accumu(ch[suf][],val);
up(suf); up(pre);
}
void del(int x)
{
int pre=find_pre(l[x]);
int suf=find_suf(r[x]);
splay(pre); splay(suf,pre);
ch[suf][]=;
up(suf); up(pre);
}
void query(int x)
{
int pre=find_pre(l[x]);
int suf=find_suf(r[x]);
splay(pre);
splay(suf,pre);
special=sum[ch[suf][]]/;
printf("%lld\n",special);
}
}Splay;
struct TREE
{
void add(int u,int v)
{
to[++cnt]=v; next[cnt]=front[u]; front[u]=cnt;
}
void dfs(int u,int f)
{
Splay.insert(u,f,a[u]);
for(int i=front[u];i;i=next[i])
dfs(to[i],u);
}
}Tree;
int main()
{
n=read();
for(int i=;i<=n;i++) a[i]=read();
int u,v;
for(int i=;i<n;i++)
{
u=read(); v=read();
Tree.add(++u,++v);
}
l[]=++tot; r[]=++tot;
siz[]=; siz[]=;
fa[]=; ch[][]=;
Tree.dfs(,);
m=read();
int op; long long x;
while(m--)
{
op=read(); x=read2(); x+=special; x++;
if(op==) { u=read(); Splay.insert(++n,x,u); }
else if(op==) { u=read(); Splay.add(x,u); }
else if(op==) Splay.del(x);
else Splay.query(x);
}
}
Codechef Dynamic Trees and Queries的更多相关文章
- [CodeChef-ANUDTQ] Dynamic Trees and Queries
类似维护括号序列,给每个点建两个点,然后所有操作都能轻松支持了.注意sum和lastans是long long. #include<cstdio> #include<algorith ...
- codechef Dynamic GCD [树链剖分 gcd]
Dynamic GCD 题意:一棵树,字词树链加,树链gcd 根据\(gcd(a,b)=gcd(a,a-b)\) 得到\(gcd(a_1, a_2, ..., a_i) = gcd(a_1, a_1- ...
- CodeChef Dynamic GCD
嘟嘟嘟vjudge 我今天解决了一个历史遗留问题! 题意:给一棵树,写一个东西,支持一下两种操作: 1.\(x\)到\(y\)的路径上的每一个点的权值加\(d\). 2.求\(x\)到\(y\)路径上 ...
- Creating dynamic/configurable parameterized queries in Entity Framework
https://dillieodigital.wordpress.com/2013/05/09/creating-dynamicconfigurable-parameterized-queries-i ...
- codechef : TREDEG , Trees and Degrees
其实有原题,生成树计数 然鹅这题里面是两道题, 50pts 可以用上面那题的做法直接过掉,另外 50pts 要推推式子,搞出 O n 的做法才行(毕竟多项式常数之大您是知道的) 虽说这道题里面是没有 ...
- 【CF375D】Trees and Queries——树上启发式合并
(题面不是来自Luogu) 题目描述 有一个大小为n且以1为根的树,树上每个点都有对应的颜色ci.现给出m次询问v, k,问以v为根的子树中有多少种颜色至少出现了k次. 输入格式 第一行两个数n,m表 ...
- EF 5 最佳实践白皮书
Performance Considerations for Entity Framework 5 By David Obando, Eric Dettinger and others Publish ...
- FTP客户端上传下载Demo实现
1.第一次感觉MS也有这么难用的MFC类: 2.CFtpFileFind类只能实例化一个,多个实例同时查找会出错(因此下载时不能递归),采用队列存储目录再依次下载: 3.本程序支持文件夹嵌套上传下载: ...
- 10+ 最流行的 jQuery Tree 菜单插件
jstree – jQuery Tree Plugin With HTML & JSON Data jstree is a lightweight and flexible jQuery pl ...
随机推荐
- 【探路者】团队中的每一次感动——Alpha版
我是[探路者]团队的leader翟宇豪.在软件工程课程开始时,当听说有团队作业这个任务时,我个人还是对leader这个角色很期待的.我很希望通过自己的努力,让我所在的团队变得更好,让组里的每一个成员在 ...
- 02-JAVA 初始化
构造器 概念:在创建对象时被自动调用的方法,构造器采用和类名一样的名称 创建对象时,会为其分配存储空间,并调用相应的构造器进行初始化.这就确保了在操作对象之前,这个对象已经被恰当的初始化了. 不接受仁 ...
- MySql 8 命令
1-创建用户 create user 用户名@'%' identified by '密码'; create user 用户名@'localhost' identified by '密码'; 2-授 ...
- 周总结<2>
本打算在这周日写周总结的,但由于事情太多,还要组织团日活动,所以没时间写.不过上周主要是一些书本上的学习,但是在周日的时候完成了一款小游戏还是比较有成就感的,但是主要是因为html的考试才去做的. 代 ...
- VS2013安装及单元测试
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAZ0AAAIlCAIAAACBzLJwAAAACXBIWXMAAA7EAAAOxAGVKw4bAAAgAE ...
- lintcode-208-赋值运算符重载
208-赋值运算符重载 实现赋值运算符重载函数,确保: 新的数据可准确地被复制 旧的数据可准确地删除/释放 可进行 A = B = C 赋值 说明 本题只适用于C++,因为 Java 和 Python ...
- C#高级编程 (第六版) 学习 第二章:C#基础
第二章 基础 1,helloworld示例: helloworld.cs using System; using System.Collections.Generic; using System.Li ...
- ASP.NET存储Session的StateServer
由于公司要对服务器做个负载均衡,所以Web项目在两台前端服务器(web1.web2)各部署了一份.但是在项目中会用到session.当一开始在web1上登陆后,由于web1之后负载可能会变大,就有可能 ...
- PHP之implode()方法
implode — 将一个一维数组的值转化为字符串 string implode ( string $glue , array $pieces ) string implode ( array $pi ...
- 如何更好的使用JAVA线程池
这篇文章结合Doug Lea大神在JDK1.5提供的JCU包,分别从线程池大小参数的设置.工作线程的创建.空闲线程的回收.阻塞队列的使用.任务拒绝策略.线程池Hook等方面来了解线程池的使用,其中涉及 ...