Matrix+POJ+二维树状数组初步
Description
We can change the matrix in the following way. Given a rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2), we change all the elements in the rectangle by using "not" operation (if it is a '0' then change it into '1' otherwise change
it into '0'). To maintain the information of the matrix, you are asked to write a program to receive and execute two kinds of instructions.
1. C x1 y1 x2 y2 (1 <= x1 <= x2 <= n, 1 <= y1 <= y2 <= n) changes the matrix by using the rectangle whose upper-left corner is (x1, y1) and lower-right corner is (x2, y2).
2. Q x y (1 <= x, y <= n) querys A[x, y].
Input
The first line of each block contains two numbers N and T (2 <= N <= 1000, 1 <= T <= 50000) representing the size of the matrix and the number of the instructions. The following T lines each represents an instruction having the format "Q x y" or "C x1 y1 x2
y2", which has been described above.
Output
There is a blank line between every two continuous test cases.
Sample Input
1
2 10
C 2 1 2 2
Q 2 2
C 2 1 2 1
Q 1 1
C 1 1 2 1
C 1 2 1 2
C 1 1 2 2
Q 1 1
C 1 1 2 1
Q 2 1
Sample Output
1
0
0
1# include<iostream>
# include<cstdio>
# include<cstring>
# include<string>
# include<set>
# include<map>
# include<sstream>
using namespace std;
const int maxn=1000+5;
int tree[maxn][maxn];
char a[10];
int n;
int lowbit(int x)
{
return x&-x;
}
int getsum(int x,int y)
{
int s=0;
for(int i=x;i>0;i-=lowbit(i))
for(int j=y;j>0;j-=lowbit(j))
s+=tree[i][j];
if(s%2==0) return 0;
else
return 1;
}
void update(int x,int y)
{
for(int i=x;i<=n;i+=lowbit(i))
for(int j=y;j<=n;j+=lowbit(j))
tree[i][j]^=1;
}
int main()
{
/*#ifndef ONLINE_JUDGE
freopen("in.cpp","r",stdin);
freopen("out.cpp","w",stdout);
#endif*/
int t;
scanf("%d",&t);
while(t--)
{
int m;
scanf("%d%d",&n,&m);
for(int i=1; i<=n; i++)
for(int j=1; j<=n; j++)
tree[i][j]=0;
while(m--)
{
int x1,y1,x2,y2;
scanf("%s%d%d",&a[0],&x1,&y1);
if(a[0]=='C')
{
scanf("%d%d",&x2,&y2);
update(x2+1,y2+1);
update(x2+1,y1);
update(x1,y2+1);
update(x1,y1);
}
else if(a[0]=='Q')
{
printf("%d\n",getsum(x1,y1));
}
}
cout<<endl;
} return 0;
}
Matrix+POJ+二维树状数组初步的更多相关文章
- POJ 2155 Matrix【二维树状数组+YY(区间计数)】
题目链接:http://poj.org/problem?id=2155 Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissio ...
- POJ 2155 Matrix (二维树状数组)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 17224 Accepted: 6460 Descripti ...
- POJ 2155 Matrix(二维树状数组+区间更新单点求和)
题意:给你一个n*n的全0矩阵,每次有两个操作: C x1 y1 x2 y2:将(x1,y1)到(x2,y2)的矩阵全部值求反 Q x y:求出(x,y)位置的值 树状数组标准是求单点更新区间求和,但 ...
- POJ 2155 Matrix 【二维树状数组】(二维单点查询经典题)
<题目链接> 题目大意: 给出一个初始值全为0的矩阵,对其进行两个操作. 1.给出一个子矩阵的左上角和右上角坐标,这两个坐标所代表的矩阵内0变成1,1变成0. 2.查询某个坐标的点的值. ...
- POJ 2155 Matrix (二维树状数组)题解
思路: 没想到二维树状数组和一维的比只差了一行,update单点更新,query求和 这里的函数用法和平时不一样,query直接算出来就是某点的值,怎么做到的呢? 我们在更新的时候不止更新一个点,而是 ...
- [POJ2155]Matrix(二维树状数组)
题目:http://poj.org/problem?id=2155 中文题意: 给你一个初始全部为0的n*n矩阵,有如下操作 1.C x1 y1 x2 y2 把矩形(x1,y1,x2,y2)上的数全部 ...
- POJ2155 Matrix(二维树状数组||区间修改单点查询)
Given an N*N matrix A, whose elements are either 0 or 1. A[i, j] means the number in the i-th row an ...
- HLJU 1188 Matrix (二维树状数组)
Matrix Time Limit: 4 Sec Memory Limit: 128 MB Description 给定一个1000*1000的二维矩阵,初始矩阵中每一个数都为1,然后为矩阵有4种操 ...
- PKU 2155 Matrix(裸二维树状数组)
题目大意:原题链接 题意很简单,就不赘诉了. 解题思路: 使用二维树状数组,很裸的题. 二维的写起来也很方便,两重循环. Add(int x,int y,int val)表示(x,y)-(n,n)矩形 ...
随机推荐
- STL的一些泛型算法
源地址:http://blog.csdn.net/byijie/article/details/8142859 从福州大学资料里摘下来的我现在能理解的泛型算法 algorithm min(a,b) 返 ...
- SUSE Linux 报错:too many open files in system
现网执行的oracle数据库,有一天突然报错(alert日志):too many open files in system,须要对操作系统同意句柄数进行扩充,查阅了非常多资料,改动点主要集中在例 ...
- 文件操作ofstream,open,close,ifstream,fin,依照行来读取数据, fstream,iosin iosout,fio.seekg(),文件写入和文件读写,文件拷贝和文件
1.ofstream,open,close 写入文件 #include<iostream> #include<fstream> using namespace std; ...
- [LeetCode] Search for a Range [34]
题目 Given a sorted array of integers, find the starting and ending position of a given target value. ...
- JQuery开发工具和插件
最近的研究jquery.为大家介绍几款开发工具.能够帮助你提高开发的效率. 1.Dreamweaver Dreamweaver是建立在WEB站点和应用程序的专业工具. 将可视化工具.应用程序开发功能和 ...
- iOS得知1_初体验
UIView:父类的所有控件,所有的UIView它是一个容器.可容纳其他UIView UIController:用于控制UIView,责创建/销毁自己的UIView,显示/隐藏UIView.处理UIV ...
- Struts2 学习第一步准备工作
第一步:安装下载MyEclispe10 对于MyEclispe的下载安装就不再详述了. 第二步:下载Struts-2.3.15 Struts-2.3.15下载地址: http://struts.apa ...
- IIS7 配置 PHP5.5
本文环境: 操作系统:Win7(x64) 中文专业版 PHP :V5.5 首先添加IIS. 控制面板-〉程序-〉打开或关闭Windows功能 1. 勾选“Internet 信息服务” ...
- UVA12304 2D Geometry 110 in 1! 计算几何
计算几何: 堆几何模版就能够了. . .. Description Problem E 2D Geometry 110 in 1! This is a collection of 110 (in bi ...
- C#之异步编程
1 异步编程的重要性 C#5.0最重要的改进是提供了更强大的异步编程,C#5.0仅增加两个关键字Async和Await,使用异步编程,方法调用是后台运行(通常在线程和任务的帮助下),并且不会阻塞调用线 ...