这篇文章是《数字图像处理原理与实践(MATLAB文本)》一本书的代码系列Part7(由于调整先前宣布订单,请读者注意分页程序,而不仅仅是基于标题数的一系列文章),第一本书特色186经225的代码页,有需要的读者下载用于科研。已经过半。代码运行结果请參见原书配图,建议下载代码前阅读下文:

关于《数字图像处理原理与实践(MATLAB版)》一书代码公布的说明

http://blog.csdn.net/baimafujinji/article/details/40987807

P186

A = rgb2gray(imread('circle.png'));
B = edge(A, 'canny');
[centers, radii, metric] = imfindcircles(B,[22 65]);
imshow(A);
viscircles(centers, radii,'EdgeColor','b');

P195

BW = imread('contour.bmp');
imshow(BW,[]);
hold on

s=size(BW);
for row = 2:55:s(1)
   for col=1:s(2)
      if BW(row,col),
         break;
      end
   end

contour = bwtraceboundary(BW, [row, col], 'W', 8);
   if(~isempty(contour))
      plot(contour(:,2),contour(:,1),'g','LineWidth',2);
   end
end

P197

I = im2bw(imread('penguins.bmp'), 0.38);
BW = 1-I;
B = bwboundaries(BW,8,'noholes');
imshow(I)
hold on

for k = 1:length(B)
    boundary = B{k};
    plot(boundary(:,2), boundary(:,1), 'g', 'LineWidth', 2)
end

补充一点小技巧。先前在写Demo的时候没想过这个问题。后来是由于要为图书做插图。所以就须要把处理结果的白边去掉,以下这段代码实现了这样的结果。与图像处理无关。这样的方法也没有出如今书里。不过关于MATLAB保存图像时的一点小技巧而已。

I = im2bw(imread('penguins.bmp'), 0.38);
BW = 1-I;
B = bwboundaries(BW,8,'noholes');
imshow(I,'border','tight');
hold on

for k = 1:length(B)
    boundary = B{k};
    plot(boundary(:,2), boundary(:,1), 'g', 'LineWidth', 2)
end

saveas(gcf,'pengs3.bmp');

P203

I = imread('nums.bmp');
locs =[57 64;47 103;81 224;94 274;11 365;85 461;86 540];
BW = imfill(I, locs, 4);
imshow(BW);

P204

I = imread('nums.bmp');
BW2 = imfill(I,'holes');
imshow(BW2);

P205

I = imread('tire.tif');
I2 = imfill(I);
figure, imshow(I), figure, imshow(I2)

P206

I = imread('eight.tif');
c = [222 272 300 270 221 194];
r = [21 21 75 121 121 75];
J = roifill(I,c,r);
imshow(I)
figure, imshow(J)

P207

function J = regiongrowing(I,x,y,threshold)

if(exist('threshold','var')==0), threshold=0.2; end
J = zeros(size(I)); % 用来标记输出结果的二值矩阵
[m n] = size(I); % 输入图像的尺寸
reg_mean = I(x,y); % 被切割区域的灰度均值
reg_size = 1; % 区域中像素的数目
% 用以存储被切割出来的区域的邻域点的堆栈
neg_free = 10000; neg_pos=0;
neg_list = zeros(neg_free,3);
delta=0; % 最新被引入的像素与区域灰度均值的差值

% 区域生长直至满足终止条件
while(delta<threshold && reg_size<numel(I))

% 检測邻域像素,并判读是否将其划入区域
    for i = -1:1
        for j = -1:1
            xn = x + i; yn = y + j; % 计算邻域点的坐标
            % 检查邻域像素是否越界
            indicator = (xn >= 1)&&(yn >= 1)&&(xn <= m)&&(yn <= n);
        
            % 假设邻域像素还不属于被切割区域则增加堆栈
            if(indicator && (J(xn,yn)==0))
                neg_pos = neg_pos+1;
                neg_list(neg_pos,:) = [xn yn I(xn,yn)]; J(xn,yn)=1;
            end
        end
    end
    
    if(neg_pos+10>neg_free), % 假设堆栈空间不足。则对其进行扩容
        neg_free=neg_free+10000;
        neg_list((neg_pos+1):neg_free,:)=0;
    end
    
    % 将那些灰度值最接近区域均值的像素增加到区域中去
    dist = abs(neg_list(1:neg_pos,3)-reg_mean);
    [delta, index] = min(dist);
    J(x,y)=2; reg_size=reg_size+1;
    
    % 计算新区域的均值
    reg_mean = (reg_mean*reg_size + neg_list(index,3))/(reg_size+1);
    % 保存像素坐标。然后将像素从堆栈中移除
    x = neg_list(index,1); y = neg_list(index,2);
    neg_list(index,:)=neg_list(neg_pos,:); neg_pos=neg_pos-1;
end

% 将由区域生长得到的切割区域以二值矩阵的形式返回
J=J>1;

P208

I = im2double(rgb2gray(imread('penguins.bmp')));
x = 244; y = 679;
J = regiongrowing(I,x,y,0.2);
figure, imshow(I+J);

P213

I = imread('liftingbody.png');
S = qtdecomp(I,.27);
blocks = repmat(uint8(0),size(S));

for dim = [512 256 128 64 32 16 8 4 2 1];    
  numblocks = length(find(S==dim));    
  if (numblocks > 0)        
    values = repmat(uint8(1),[dim dim numblocks]);
    values(2:dim,2:dim,:) = 0;
    blocks = qtsetblk(blocks,S,dim,values);
  end
end

blocks(end,1:end) = 1;
blocks(1:end,end) = 1;
imshow(I), figure, imshow(blocks,[])

P219

rgb = imread('potatos.jpg');
I = rgb2gray(rgb);

hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');
Ix = imfilter(double(I), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);

L = watershed(gradmag);
Lrgb = label2rgb(L);
figure
subplot(1, 2, 1); imshow(gradmag,[]), title('梯度幅值图像')
subplot(1, 2, 2); imshow(Lrgb); title('对梯度图直接做分水岭切割')

P221-P224

rgb = imread('potatos.jpg');
I = rgb2gray(rgb);

hy = fspecial('sobel');
hx = hy';
Iy = imfilter(double(I), hy, 'replicate');
Ix = imfilter(double(I), hx, 'replicate');
gradmag = sqrt(Ix.^2 + Iy.^2);

se = strel('disk', 12);
Ie = imerode(I, se);
Iobr = imreconstruct(Ie, I);

Iobrd = imdilate(Iobr, se);
Iobrcbr = imreconstruct(imcomplement(Iobrd), imcomplement(Iobr));
Iobrcbr = imcomplement(Iobrcbr);

fgm = imregionalmax(Iobrcbr);
It1 = rgb(:, :, 1);
It2 = rgb(:, :, 2);
It3 = rgb(:, :, 3);
It1(fgm) = 255; It2(fgm) = 0; It3(fgm) = 0;
I2 = cat(3, It1, It2, It3);

figure
subplot(1, 2, 1); imshow(fgm, []); title('局部极大值图像');
subplot(1, 2, 2); imshow(I2); title('局部极大值叠加图像');

se2 = strel(ones(15,15));
fgm2 = imclose(fgm, se2);
fgm3 = imerode(fgm2, se2);
fgm4 = bwareaopen(fgm3, 400);

bw = im2bw(Iobrcbr, graythresh(Iobrcbr));
D = bwdist(bw);
DL = watershed(D);
bgm = DL == 0;
gradmag2 = imimposemin(gradmag, bgm | fgm4);

L = watershed(gradmag2);
%第一种显示方法
Lrgb = label2rgb(L, 'jet', 'w', 'shuffle');
figure
subplot(1,2,1), imshow(Lrgb), title('分水岭切割结果显示1');
%另外一种显示方法
subplot(1, 2, 2); imshow(rgb, []), title('分水岭切割结果显示2');
hold on;
himage = imshow(Lrgb);
set(himage, 'AlphaData', 0.3);

(代码公布未完成。请也许...)

版权声明:本文博主原创文章,博客,未经同意不得转载。

《数字图像处理原理与实践(MATLAB文本)》书代码Part7的更多相关文章

  1. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part6

    本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part6,辑录该书第281至第374页之代码,供有须要读者下载研究使用.代码运行结果请參见原书配图,建议下载代码前阅读下 ...

  2. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part2

    本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part2(P43~80),代码运行结果请參见原书配图,建议下载代码前阅读下文: 关于<数字图像处理原理与实践(MA ...

  3. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part1

    本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part1(P1~42).代码运行结果请參见原书配图. P20 I = imread('lena.jpg');BW1 = ...

  4. 《数字图像处理原理与实践(MATLAB版)》一书之代码Part5

    <数字图像处理原理与实践(MATLAB版)>一书之代码Part5 本文系<数字图像处理原理与实践(MATLAB版)>一书之代码系列的Part5.辑录该书第225至第280页之代 ...

  5. 数字图像处理原理与实践(MATLAB版)勘误表

    本文系<数字图像处理原理与实践(MATLAB版)>一书的勘误表. [内容简单介绍]本书全面系统地介绍了数字图像处理技术的理论与方法,内容涉及几何变换.灰度变换.图像增强.图像切割.图像去噪 ...

  6. Reading | 《数字图像处理原理与实践(MATLAB版)》(未完待续)

    目录 一.前言 1.MATLAB or C++ 2.图像文件 文件头 调色板 像素数据 3.RGB颜色空间 原理 坐标表示 4.MATLAB中的图像文件 图像类型 image()函数 imshow() ...

  7. FPGA经典:Verilog传奇与基于FPGA的数字图像处理原理及应用

    一 简述 最近恶补基础知识,借了<<Verilog传奇>>,<基于FPGA的嵌入式图像处理系统设计>和<<基千FPGA的数字图像处理原理及应用>& ...

  8. 初次接触《C++程序设计原理与实践》一书

    前两天读书日,买了些书回来看.__Bjarne Stroustrup__的<C++程序设计原理与实践>便是其中一本.其实也没看完,只看了第0章-致读者,大师不愧是大师,只看了一章就让心生共 ...

  9. MATLAB数字图像处理(一)基础操作和傅立叶变换

    数字图像处理是一门集计算机科学.光学.数学.物理学等多学科的综合科学.随着计算机科学的发展,数字图像处理技术取得了巨大的进展,呈现出强大的生命力,已经在多种领域取得了大量的应用,推动了社会的发展.其中 ...

随机推荐

  1. Twenty Newsgroups Classification任务之二seq2sparse(5)

    接上篇blog,继续分析.接下来要调用代码如下: // Should document frequency features be processed if (shouldPrune || proce ...

  2. Doxgen+Graphiz+htmlhelp配置

    查看一些开源码常常被一些函数的调用关系给绕进去.找个工具生成个调用关系图或简单的文档对于帮助阅读程序有非常大的帮助. 1 doxgen+graphviz+htmlhelp简单介绍 1.1 doxgen ...

  3. WPF-19:分享一个样式(左右滑动选中的checbox)

    首先看下效果. 选中: 不选中 样式: <Style x:Key="CheckStyle" TargetType="{x:Type CheckBox}"& ...

  4. LVS的调度算法分析

    LVS调度算法 一.静态调度算法 1.  rr(round robin)轮询调度,即调度器将客户端的请求依次的传递给内部的服务器,从1到N,算法简洁,无须记录状态,但是不考虑每台服务器的性能. 配置如 ...

  5. Gnu Linux下文件的字符编码及转换工具

    /*********************************************************************  * Author  : Samson  * Date   ...

  6. GridView的RowDataBound事件中获取当前行内容的几种方法

    1. Cells[x].Txt.    从列单元格的文本值获取.这种方法简单高率,最为常用,但是功能单纯.此法存在几个缺点:   (1)无法获取到设置了隐藏属性的数据列的值,所取到的值为“”(空).  ...

  7. hdu2102(bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 分析:bfs求最短时间到达'P'点,不过本题有好几个trick,我都踩到了,自己还是太嫩了... ...

  8. windows服务的创建、安装和调试

    1.创建 windows服务 项目   文件 -> 新建项目 -> 已安装的模板 -> Visual C# -> windows ,在右侧窗口选择"windows 服 ...

  9. redis的分布式解决方式--codis (转)

    codis是豌豆荚开源的分布式server.眼下处于稳定阶段. 原文地址:https://github.com/wandoulabs/codis/blob/master/doc/tutorial_zh ...

  10. SSH是什么?Linux如何修改SSH端口号?

    通过SSH连接可以远程管理Linux等设备,默认linuxssh端口是22端口,如何修改SSH默认端口,如何增加SSH端口呢?,下面小编给大家演示一下   工具/原料 Xshell   putty 等 ...