前言:
  一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了。
  本文将从MySQL总体架构--->查询执行流程--->语句执行顺序来探讨一下其中的知识。
 
一、MySQL架构总览:
  架构最好看图,再配上必要的说明文字。
  下图根据参考书籍中一图为原本,再在其上添加上了自己的理解。
 
  从上图中我们可以看到,整个架构分为两层,上层是MySQLD的被称为的‘SQL Layer’,下层是各种各样对上提供接口的存储引擎,被称为‘Storage Engine Layer’。其它各个模块和组件,从名字上就可以简单了解到它们的作用,这里就不再累述了。
 
二、查询执行流程
  下面再向前走一些,容我根据自己的认识说一下查询执行的流程是怎样的:
1.连接
  1.1客户端发起一条Query请求,监听客户端的‘连接管理模块’接收请求
  1.2将请求转发到‘连接进/线程模块’
  1.3调用‘用户模块’来进行授权检查
  1.4通过检查后,‘连接进/线程模块’从‘线程连接池’中取出空闲的被缓存的连接线程和客户端请求对接,如果失败则创建一个新的连接请求
 
2.处理
  2.1先查询缓存,检查Query语句是否完全匹配,接着再检查是否具有权限,都成功则直接取数据返回
  2.2上一步有失败则转交给‘命令解析器’,经过词法分析,语法分析后生成解析树
  2.3接下来是预处理阶段,处理解析器无法解决的语义,检查权限等,生成新的解析树
  2.4再转交给对应的模块处理
  2.5如果是SELECT查询还会经由‘查询优化器’做大量的优化,生成执行计划
  2.6模块收到请求后,通过‘访问控制模块’检查所连接的用户是否有访问目标表和目标字段的权限
  2.7有则调用‘表管理模块’,先是查看table cache中是否存在,有则直接对应的表和获取锁,否则重新打开表文件
  2.8根据表的meta数据,获取表的存储引擎类型等信息,通过接口调用对应的存储引擎处理
  2.9上述过程中产生数据变化的时候,若打开日志功能,则会记录到相应二进制日志文件中
 
3.结果
  3.1Query请求完成后,将结果集返回给‘连接进/线程模块’
  3.2返回的也可以是相应的状态标识,如成功或失败等
  3.3‘连接进/线程模块’进行后续的清理工作,并继续等待请求或断开与客户端的连接
 
一图小总结
 
 
三、SQL解析顺序
  接下来再走一步,让我们看看一条SQL语句的前世今生。
  首先看一下示例语句
SELECT DISTINCT
< select_list >
FROM
< left_table > < join_type >
JOIN < right_table > ON < join_condition >
WHERE
< where_condition >
GROUP BY
< group_by_list >
HAVING
< having_condition >
ORDER BY
< order_by_condition >
LIMIT < limit_number >
  然而它的执行顺序是这样的
 FROM <left_table>
ON <join_condition>
<join_type> JOIN <right_table>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
SELECT
DISTINCT <select_list>
ORDER BY <order_by_condition>
LIMIT <limit_number>
  虽然自己没想到是这样的,不过一看还是很自然和谐的,从哪里获取,不断的过滤条件,要选择一样或不一样的,排好序,那才知道要取前几条呢。
既然如此了,那就让我们一步步来看看其中的细节吧。
 
准备工作
  1.创建测试数据库
create database testQuery
  2.创建测试表
CREATE TABLE table1
(
uid VARCHAR(10) NOT NULL,
name VARCHAR(10) NOT NULL,
PRIMARY KEY(uid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2
(
oid INT NOT NULL auto_increment,
uid VARCHAR(10),
PRIMARY KEY(oid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;
  3.插入数据
INSERT INTO table1(uid,name) VALUES('aaa','mike'),('bbb','jack'),('ccc','mike'),('ddd','mike');

INSERT INTO table2(uid) VALUES('aaa'),('aaa'),('bbb'),('bbb'),('bbb'),('ccc'),(NULL);
  4.最后想要的结果
SELECT
a.uid,
count(b.oid) AS total
FROM
table1 AS a
LEFT JOIN table2 AS b ON a.uid = b.uid
WHERE
a. NAME = 'mike'
GROUP BY
a.uid
HAVING
count(b.oid) < 2
ORDER BY
total DESC
LIMIT 1;
!现在开始SQL解析之旅吧!
 
1. FROM
当涉及多个表的时候,左边表的输出会作为右边表的输入,之后会生成一个虚拟表VT1。
(1-J1)笛卡尔积
计算两个相关联表的笛卡尔积(CROSS JOIN) ,生成虚拟表VT1-J1。
mysql> select * from table1,table2;
+-----+------+-----+------+
| uid | name | oid | uid |
+-----+------+-----+------+
| aaa | mike | 1 | aaa |
| bbb | jack | 1 | aaa |
| ccc | mike | 1 | aaa |
| ddd | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 2 | aaa |
| ccc | mike | 2 | aaa |
| ddd | mike | 2 | aaa |
| aaa | mike | 3 | bbb |
| bbb | jack | 3 | bbb |
| ccc | mike | 3 | bbb |
| ddd | mike | 3 | bbb |
| aaa | mike | 4 | bbb |
| bbb | jack | 4 | bbb |
| ccc | mike | 4 | bbb |
| ddd | mike | 4 | bbb |
| aaa | mike | 5 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 5 | bbb |
| ddd | mike | 5 | bbb |
| aaa | mike | 6 | ccc |
| bbb | jack | 6 | ccc |
| ccc | mike | 6 | ccc |
| ddd | mike | 6 | ccc |
| aaa | mike | 7 | NULL |
| bbb | jack | 7 | NULL |
| ccc | mike | 7 | NULL |
| ddd | mike | 7 | NULL |
+-----+------+-----+------+
28 rows in set (0.00 sec)
(1-J2)ON过滤
基于虚拟表VT1-J1这一个虚拟表进行过滤,过滤出所有满足ON 谓词条件的列,生成虚拟表VT1-J2。
注意:这里因为语法限制,使用了'WHERE'代替,从中读者也可以感受到两者之间微妙的关系;
mysql> SELECT
-> *
-> FROM
-> table1,
-> table2
-> WHERE
-> table1.uid = table2.uid
-> ;
+-----+------+-----+------+
| uid | name | oid | uid |
+-----+------+-----+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 3 | bbb |
| bbb | jack | 4 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 6 | ccc |
+-----+------+-----+------+
6 rows in set (0.00 sec)
(1-J3)添加外部列
如果使用了外连接(LEFT,RIGHT,FULL),主表(保留表)中的不符合ON条件的列也会被加入到VT1-J2中,作为外部行,生成虚拟表VT1-J3。
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 3 | bbb |
| bbb | jack | 4 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
7 rows in set (0.00 sec)
下面从网上找到一张很形象的关于‘SQL JOINS'的解释图,如若侵犯了你的权益,请劳烦告知删除,谢谢。
 
 
2. WHERE
对VT1过程中生成的临时表进行过滤,满足WHERE子句的列被插入到VT2表中。
注意:
此时因为分组,不能使用聚合运算;也不能使用SELECT中创建的别名;
与ON的区别:
如果有外部列,ON针对过滤的是关联表,主表(保留表)会返回所有的列;
如果没有添加外部列,两者的效果是一样的;
应用:
对主表的过滤应该放在WHERE;
对于关联表,先条件查询后连接则用ON,先连接后条件查询则用WHERE;
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike';
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
4 rows in set (0.00 sec)
3. GROUP BY
这个子句会把VT2中生成的表按照GROUP BY中的列进行分组。生成VT3表。
注意:
其后处理过程的语句,如SELECT,HAVING,所用到的列必须包含在GROUP BY中,对于没有出现的,得用聚合函数;
原因:
GROUP BY改变了对表的引用,将其转换为新的引用方式,能够对其进行下一级逻辑操作的列会减少;
我的理解是:
根据分组字段,将具有相同分组字段的记录归并成一条记录,因为每一个分组只能返回一条记录,除非是被过滤掉了,而不在分组字段里面的字段可能会有多个值,多个值是无法放进一条记录的,所以必须通过聚合函数将这些具有多值的列转换成单值;
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
3 rows in set (0.00 sec)
4. HAVING
这个子句对VT3表中的不同的组进行过滤,只作用于分组后的数据,满足HAVING条件的子句被加入到VT4表中。
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
2 rows in set (0.00 sec)
5. SELECT
这个子句对SELECT子句中的元素进行处理,生成VT5表。
(5-J1)计算表达式 计算SELECT 子句中的表达式,生成VT5-J1
(5-J2)DISTINCT
寻找VT5-1中的重复列,并删掉,生成VT5-J2
如果在查询中指定了DISTINCT子句,则会创建一张内存临时表(如果内存放不下,就需要存放在硬盘了)。这张临时表的表结构和上一步产生的虚拟表VT5是一样的,不同的是对进行DISTINCT操作的列增加了一个唯一索引,以此来除重复数据。
mysql> SELECT
-> a.uid,
-> count(b.oid) AS total
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2;
+-----+-------+
| uid | total |
+-----+-------+
| ccc | 1 |
| ddd | 0 |
+-----+-------+
2 rows in set (0.00 sec)
6.ORDER BY
从VT5-J2中的表中,根据ORDER BY 子句的条件对结果进行排序,生成VT6表。
注意:
唯一可使用SELECT中别名的地方;
mysql> SELECT
-> a.uid,
-> count(b.oid) AS total
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2
-> ORDER BY
-> total DESC;
+-----+-------+
| uid | total |
+-----+-------+
| ccc | 1 |
| ddd | 0 |
+-----+-------+
2 rows in set (0.00 sec)
7.LIMIT
LIMIT子句从上一步得到的VT6虚拟表中选出从指定位置开始的指定行数据。
注意:
offset和rows的正负带来的影响;
当偏移量很大时效率是很低的,可以这么做:
采用子查询的方式优化,在子查询里先从索引获取到最大id,然后倒序排,再取N行结果集
采用INNER JOIN优化,JOIN子句里也优先从索引获取ID列表,然后直接关联查询获得最终结果
mysql> SELECT
-> a.uid,
-> count(b.oid) AS total
-> FROM
-> table1 AS a
-> LEFT JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2
-> ORDER BY
-> total DESC
-> LIMIT 1;
+-----+-------+
| uid | total |
+-----+-------+
| ccc | 1 |
+-----+-------+
1 row in set (0.00 sec)
至此SQL的解析之旅就结束了,上图总结一下:
 
参考书籍:
《MySQL性能调优与架构实践》
《MySQL技术内幕:SQL编程》
 
尾声:
  嗯,到这里这一次的深入了解之旅就差不多真的结束了,虽然也不是很深入,只是一些东西将其东拼西凑在一起而已,参考了一些以前看过的书籍,大师之笔果然不一样。而且在这过程中也是get到了蛮多东西的,最重要的是更进一步意识到,计算机软件世界的宏大呀~
  另由于本人才疏学浅,其中难免存在纰漏错误之处,若发现劳烦告知修改,感谢~
   如需转载,请保留AnnsShadoW和本文地址http://www.cnblogs.com/annsshadow/p/5037667.html

步步深入:MySQL架构总览->查询执行流程->SQL解析顺序的更多相关文章

  1. MySQL架构总览->查询执行流程->SQL解析顺序

    Reference:  https://www.cnblogs.com/annsshadow/p/5037667.html 前言: 一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后 ...

  2. 步步深入:MySQL架构总览->查询执行流程->SQL解析顺序(转)

    文章转自   http://www.cnblogs.com/annsshadow/p/5037667.html https://www.cnblogs.com/cuisi/p/7685893.html

  3. 步步深入MySQL:架构->查询执行流程->SQL解析顺序!

    一.前言 一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了. 本文将从MySQL总体架构--->查询执行流程--->语句执行顺序 ...

  4. 让MySQL为我们记录执行流程

    让MySQL为我们记录执行流程   我们可以开启profiling,让MySQL为我们记录SQL语句的执行流程   查看profiling参数 shell > select @@profilin ...

  5. mysql join语句的执行流程是怎么样的

    mysql join语句的执行流程是怎么样的 join语句是使用十分频繁的sql语句,同样结果的join语句,写法不同会有非常大的性能差距. select * from t1 straight_joi ...

  6. MySQL深层理解,执行流程

    MySQL是一个关系型数据库,关联的数据保存在不同的表中,增加了数据操作的灵活性. 执行流程 MySQL是一个单进程服务,每一个请求用线程来响应, 流程: 1,客户请求,服务器开辟一个线程响应用户. ...

  7. Spark架构与作业执行流程简介(scala版)

    在讲spark之前,不得不详细介绍一下RDD(Resilient Distributed Dataset),打开RDD的源码,一开始的介绍如此: 字面意思就是弹性分布式数据集,是spark中最基本的数 ...

  8. mysql update语句的执行流程是怎样的

    update更新语句流程是怎么样的 update更新语句基本流程也会查询select流程一样,都会走一遍. update涉及更新数据,会对行加dml写锁,这个DML读锁是互斥的.其他dml写锁需要等待 ...

  9. SQL学习笔记四(补充-1-1)之MySQL单表查询补充部分:SQL逻辑查询语句执行顺序

    阅读目录 一 SELECT语句关键字的定义顺序 二 SELECT语句关键字的执行顺序 三 准备表和数据 四 准备SQL逻辑查询测试语句 五 执行顺序分析 一 SELECT语句关键字的定义顺序 SELE ...

随机推荐

  1. [WPF]控件应用多个样式

    最近在做WPF项目,公司没有专门的UI工程师,什么都要自己做.接触WPF已经有好几年了,自定义样式什么的也可以做一些.WPF在使用样式的时候一般都是 Style="{StaticResour ...

  2. 构建ASP.NET MVC4+EF5+EasyUI+Unity2.x注入的后台管理系统(14)-EasyUI缺陷修复与扩展

    系列目录 不知不觉已经过了13讲,(本来还要讲多一讲是,数据验证之自定义验证,基于园友还是对权限这块比较敢兴趣,讲不讲验证还是看大家的反映),我们应该对系统有一个小结.首先这是一个团队开发项目,基于接 ...

  3. python基础操作以及hdfs操作

    目录 前言 基础操作 hdfs操作 总结 一.前言        作为一个全栈工程师,必须要熟练掌握各种语言...HelloWorld.最近就被"逼着"走向了python开发之路, ...

  4. jvm系列(四):jvm调优-命令大全(jps jstat jmap jhat jstack jinfo)

    文章同步发布于github博客地址,阅读效果更佳,欢迎品尝 运用jvm自带的命令可以方便的在生产监控和打印堆栈的日志信息帮忙我们来定位问题!虽然jvm调优成熟的工具已经有很多:jconsole.大名鼎 ...

  5. 三种上传文件不刷新页面的方法讨论:iframe/FormData/FileReader

    发请求有两种方式,一种是用ajax,另一种是用form提交,默认的form提交如果不做处理的话,会使页面重定向.以一个简单的demo做说明: html如下所示,请求的路径action为"up ...

  6. React-Native学习系列(二) Image和ScrollView

    接下来,我们接着(一)继续讲,今天我们学习的是Image组件和ScrollView组件. Image组件 Image:一个用于显示多种不同类型图片的React组件.那么要如何使用呢? 引入本地图片: ...

  7. WinForm 调用 PrintDocument

    使用WinForm 打印 Devexpress BarCodeControl 二维码 /// <summary> /// Handles the ItemClick event of th ...

  8. Devexpress GridView 列中显示图片

    首先将图片添加到ImageList中 添加GridView中Column void gridView1_CustomUnboundColumnData(object sender, DevExpres ...

  9. svn+teamcity+YouTrack+Upsource搭建—写给明天工作室的小伙伴

    首先解释下概念: SVN:Subversion的简称,版本控制系统.采用集中式管理(本地只保留服务器仓储的副本,想要把代码交到服务器或者看提交记录.差异对比就必须得有网络连接) Teamcity:可持 ...

  10. 最小生成树计数 bzoj 1016

    最小生成树计数 (1s 128M) award [问题描述] 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一 ...