步步深入:MySQL架构总览->查询执行流程->SQL解析顺序


SELECT DISTINCT
< select_list >
FROM
< left_table > < join_type >
JOIN < right_table > ON < join_condition >
WHERE
< where_condition >
GROUP BY
< group_by_list >
HAVING
< having_condition >
ORDER BY
< order_by_condition >
LIMIT < limit_number >
FROM <left_table>
ON <join_condition>
<join_type> JOIN <right_table>
WHERE <where_condition>
GROUP BY <group_by_list>
HAVING <having_condition>
SELECT
DISTINCT <select_list>
ORDER BY <order_by_condition>
LIMIT <limit_number>
create database testQuery
CREATE TABLE table1
(
uid VARCHAR(10) NOT NULL,
name VARCHAR(10) NOT NULL,
PRIMARY KEY(uid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8; CREATE TABLE table2
(
oid INT NOT NULL auto_increment,
uid VARCHAR(10),
PRIMARY KEY(oid)
)ENGINE=INNODB DEFAULT CHARSET=UTF8;
INSERT INTO table1(uid,name) VALUES('aaa','mike'),('bbb','jack'),('ccc','mike'),('ddd','mike');
INSERT INTO table2(uid) VALUES('aaa'),('aaa'),('bbb'),('bbb'),('bbb'),('ccc'),(NULL);
SELECT
a.uid,
count(b.oid) AS total
FROM
table1 AS a
LEFT JOIN table2 AS b ON a.uid = b.uid
WHERE
a. NAME = 'mike'
GROUP BY
a.uid
HAVING
count(b.oid) < 2
ORDER BY
total DESC
LIMIT 1;
mysql> select * from table1,table2;
+-----+------+-----+------+
| uid | name | oid | uid |
+-----+------+-----+------+
| aaa | mike | 1 | aaa |
| bbb | jack | 1 | aaa |
| ccc | mike | 1 | aaa |
| ddd | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 2 | aaa |
| ccc | mike | 2 | aaa |
| ddd | mike | 2 | aaa |
| aaa | mike | 3 | bbb |
| bbb | jack | 3 | bbb |
| ccc | mike | 3 | bbb |
| ddd | mike | 3 | bbb |
| aaa | mike | 4 | bbb |
| bbb | jack | 4 | bbb |
| ccc | mike | 4 | bbb |
| ddd | mike | 4 | bbb |
| aaa | mike | 5 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 5 | bbb |
| ddd | mike | 5 | bbb |
| aaa | mike | 6 | ccc |
| bbb | jack | 6 | ccc |
| ccc | mike | 6 | ccc |
| ddd | mike | 6 | ccc |
| aaa | mike | 7 | NULL |
| bbb | jack | 7 | NULL |
| ccc | mike | 7 | NULL |
| ddd | mike | 7 | NULL |
+-----+------+-----+------+
28 rows in set (0.00 sec)
mysql> SELECT
-> *
-> FROM
-> table1,
-> table2
-> WHERE
-> table1.uid = table2.uid
-> ;
+-----+------+-----+------+
| uid | name | oid | uid |
+-----+------+-----+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 3 | bbb |
| bbb | jack | 4 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 6 | ccc |
+-----+------+-----+------+
6 rows in set (0.00 sec)
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| bbb | jack | 3 | bbb |
| bbb | jack | 4 | bbb |
| bbb | jack | 5 | bbb |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
7 rows in set (0.00 sec)

mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike';
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| aaa | mike | 2 | aaa |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
4 rows in set (0.00 sec)
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| aaa | mike | 1 | aaa |
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
3 rows in set (0.00 sec)
mysql> SELECT
-> *
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2;
+-----+------+------+------+
| uid | name | oid | uid |
+-----+------+------+------+
| ccc | mike | 6 | ccc |
| ddd | mike | NULL | NULL |
+-----+------+------+------+
2 rows in set (0.00 sec)
mysql> SELECT
-> a.uid,
-> count(b.oid) AS total
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2;
+-----+-------+
| uid | total |
+-----+-------+
| ccc | 1 |
| ddd | 0 |
+-----+-------+
2 rows in set (0.00 sec)
mysql> SELECT
-> a.uid,
-> count(b.oid) AS total
-> FROM
-> table1 AS a
-> LEFT OUTER JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2
-> ORDER BY
-> total DESC;
+-----+-------+
| uid | total |
+-----+-------+
| ccc | 1 |
| ddd | 0 |
+-----+-------+
2 rows in set (0.00 sec)
mysql> SELECT
-> a.uid,
-> count(b.oid) AS total
-> FROM
-> table1 AS a
-> LEFT JOIN table2 AS b ON a.uid = b.uid
-> WHERE
-> a. NAME = 'mike'
-> GROUP BY
-> a.uid
-> HAVING
-> count(b.oid) < 2
-> ORDER BY
-> total DESC
-> LIMIT 1;
+-----+-------+
| uid | total |
+-----+-------+
| ccc | 1 |
+-----+-------+
1 row in set (0.00 sec)

步步深入:MySQL架构总览->查询执行流程->SQL解析顺序的更多相关文章
- MySQL架构总览->查询执行流程->SQL解析顺序
Reference: https://www.cnblogs.com/annsshadow/p/5037667.html 前言: 一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后 ...
- 步步深入:MySQL架构总览->查询执行流程->SQL解析顺序(转)
文章转自 http://www.cnblogs.com/annsshadow/p/5037667.html https://www.cnblogs.com/cuisi/p/7685893.html
- 步步深入MySQL:架构->查询执行流程->SQL解析顺序!
一.前言 一直是想知道一条SQL语句是怎么被执行的,它执行的顺序是怎样的,然后查看总结各方资料,就有了下面这一篇博文了. 本文将从MySQL总体架构--->查询执行流程--->语句执行顺序 ...
- 让MySQL为我们记录执行流程
让MySQL为我们记录执行流程 我们可以开启profiling,让MySQL为我们记录SQL语句的执行流程 查看profiling参数 shell > select @@profilin ...
- mysql join语句的执行流程是怎么样的
mysql join语句的执行流程是怎么样的 join语句是使用十分频繁的sql语句,同样结果的join语句,写法不同会有非常大的性能差距. select * from t1 straight_joi ...
- MySQL深层理解,执行流程
MySQL是一个关系型数据库,关联的数据保存在不同的表中,增加了数据操作的灵活性. 执行流程 MySQL是一个单进程服务,每一个请求用线程来响应, 流程: 1,客户请求,服务器开辟一个线程响应用户. ...
- Spark架构与作业执行流程简介(scala版)
在讲spark之前,不得不详细介绍一下RDD(Resilient Distributed Dataset),打开RDD的源码,一开始的介绍如此: 字面意思就是弹性分布式数据集,是spark中最基本的数 ...
- mysql update语句的执行流程是怎样的
update更新语句流程是怎么样的 update更新语句基本流程也会查询select流程一样,都会走一遍. update涉及更新数据,会对行加dml写锁,这个DML读锁是互斥的.其他dml写锁需要等待 ...
- SQL学习笔记四(补充-1-1)之MySQL单表查询补充部分:SQL逻辑查询语句执行顺序
阅读目录 一 SELECT语句关键字的定义顺序 二 SELECT语句关键字的执行顺序 三 准备表和数据 四 准备SQL逻辑查询测试语句 五 执行顺序分析 一 SELECT语句关键字的定义顺序 SELE ...
随机推荐
- CSharpGL(23)用ComputeShader实现一个简单的ParticleSimulator
CSharpGL(23)用ComputeShader实现一个简单的ParticleSimulator 我还没有用过Compute Shader,所以现在把红宝书里的例子拿来了,加入CSharpGL中. ...
- ABP源码分析十二:本地化
本文逐个分析ABP中涉及到locaization的接口和类,以及相互之间的关系.本地化主要涉及两个方面:一个是语言(Language)的管理,这部分相对简单.另一个是语言对应得本地化资源(Locali ...
- Entity Framework 6 Recipes 2nd Edition(9-1)译->用Web Api更新单独分离的实体
第九章 在N层结构的应用程序中使用EF 不是所有的应用都能完全地写入到一个单个的过程中(就是驻留在一个单一的物理层中),实际上,在当今不断发展的网络世界,大量的应用程序的结构包含经典的表现层,应用程, ...
- Atitit 会话层和表示层的异同
Atitit 会话层和表示层的异同 会话层 这一层也称为会晤层或对话层.在会话层及以上的更高层次中,数据传送的单位没有另外再取名字,一般都可称为报文. 会话层虽然不参与具体的数据传输,但它却对数据传输 ...
- python资料
Python进阶 https://pythontips.com/ https://flyouting.gitbooks.io/learn-python-the-hard-way-cn/content/ ...
- Swift3中函数的使用
前言:前不久,Swift语言也更新到了3.0版本,对编程有一定基础的朋友一定不会对函数这个概念陌生.而Swift语言中的函数也是大同小异的,今天就跟着小编来学习一下Swift3中函数的不一样的用法. ...
- Bootstrap3插件系列:bootstrap-select2
1.下载插件 https://github.com/select2/select2 http://select2.github.io/ 2.引用插件 <script src="~/Sc ...
- 计算照片的面积(WPF篇)
昨天,老周突发其想地给大伙伴们说了一下UWP应用中计算照片面积的玩法,而且老周也表示会提供WPF版本的示例.所以,今天就给大伙们补上吧. WPF是集成在.net框架中,属于.net的一部分,千万不要跟 ...
- java监控之ManagementFactory分析
The ManagementFactory class is a factory class for getting managed beans for the Java platform. This ...
- Bootstrap框架的学习(二)
一.下载Bootstrap Bootstrap (当前版本 v3.3.0)提供以下几种方式帮你快速上手,每一种方式针对具有不同技能等级的开发者和不同的使用场景. 下载地址:http://v3.boot ...