HDU 4337 King Arthur's Knights 它输出一个哈密顿电路
n积分m文章无向边
它输出一个哈密顿电路
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std; const int N = 155; int n, m;
bool mp[N][N]; int S, T, top, Stack[N];
bool vis[N];
void _reverse(int l,int r) {
while (l<r)
swap(Stack[l++],Stack[r--]);
}
void expand() {
while(1) {
bool flag = 0;
for (int i=1; i<=n && false == flag; i++)
if (!vis[i] && mp[T][i])
{
Stack[top++]=i;
T=i;
flag = vis[i] = 1;
}
if (!flag) return;
}
}
void hamiltun(int Start){
memset(vis, 0, sizeof vis); S = Start;
for(T=2; T<=n; T++) //随意找两个相邻的节点S和T
if (mp[S][T]) break;
top = 0;
Stack[top++]=S;
Stack[top++]=T;
vis[S] = vis[T] = true;
while (1)
{
expand(); //在它们基础上扩展出一条尽量长的没有反复节点的路径:步骤1
_reverse(0,top-1);
swap(S,T);
expand(); //在它们基础上扩展出一条尽量长的没有反复节点的路径
int mid=0;
if (!mp[S][T]) //若S与T不相邻,能够构造出一个回路使新的S和T相邻
{
//设路径S→T上有k+2个节点,依次为S,v1,v2…… vk和T.
//能够证明存在节点vi,i∈[1,k),满足vi与T相邻,且vi+1与S相邻
for (int i=1; i<top-2; i++)
if (mp[Stack[i]][T] && mp[Stack[i+1]][S])
{
mid=i+1; break;
}
//把原路径变成S→vi→T→vi+1→S,即形成了一个回路
_reverse(mid,top-1);
T=Stack[top-1];
}
if (top==n) break;
//如今我们有了一个没有反复节点的回路.假设它的长度为N,则汉密尔顿回路就找到了
//否则,因为整个图是连通的,所以在该回路上,一定存在一点与回路以外的点相邻
//那么从该点处把回路断开,就变回了一条路径,再依照步骤1的方法尽量扩展路径
for (int i = 1, j; i <= n; i++)
if (!vis[i])
{
for (j=1; j<top-1; j++)
if (mp[Stack[j]][i]) break;
if (mp[Stack[j]][i])
{
T=i; mid=j;
break;
}
}
S=Stack[mid-1];
_reverse(0,mid-1);
_reverse(mid,top-1);
Stack[top++]=T;
vis[T]=true;
}
} int main() {
while (cin>>n>>m) {
memset(mp, 0, sizeof mp);
for (int i = 1, u, v; i <= m; i++) {
scanf("%d %d",&u, &v);
mp[u][v] = mp[v][u] = 1;
}
hamiltun(1);
for (int i = 0; i < top; i++)
printf("%d%c", Stack[i], i==top-1?'\n':' ');
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
HDU 4337 King Arthur's Knights 它输出一个哈密顿电路的更多相关文章
- hdu 4337 King Arthur's Knights (Hamilton)
King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu4337 King Arthur's Knights
King Arthur's Knights Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- POJ3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- poj-3682 King Arthur's Birthday Celebration
C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...
- HDU 5643 King's Game 打表
King's Game 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5643 Description In order to remember hi ...
- HDU 5642 King's Order dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 King's Order Accepts: 381 Submissions: 1361 ...
- HDU 5644 King's Pilots 费用流
King's Pilots 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5644 Description The military parade w ...
- HDU 5642 King's Order 动态规划
King's Order 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5642 Description After the king's speec ...
- HDU 5640 King's Cake GCD
King's Cake 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5640 Description It is the king's birthd ...
随机推荐
- SQL ---指令实例语句
1 1 create database+数据库名字 创建数据库 2 2 create table+表的名字 创建表 3 表中的操作: 4 3 insert into 表名 (列名1,列名2··)val ...
- AIR
There is a meaning for wings that cannot fly,it's a previous memory of when you once flew through th ...
- 调试Release发布版程序的Crash错误
http://www.cppblog.com/Walker/archive/2012/11/08/146153.html http://blog.sina.com.cn/s/blog_48f93b53 ...
- Common Lisp Style Guide - Ariel Networks Labs
Common Lisp Style Guide - Ariel Networks Labs Common Lisp Style Guide
- leetcode第一刷_Largest Rectangle in Histogram
非常难的问题,数组线性时间. 属于我之前说的解法的借助辅助空间.给定两个柱子,他们之间的面积由什么确定呢?没错,他们之间的距离和他们之间最矮的那个柱子的高度.我们并不知道这个柱子在什么位置,所以仅仅能 ...
- SVN无法修改以前提交日志的办法
一直用SVN作为代码备份,但是今天偶然发现SVN上不能修改意见提交的代码,于是乎开始谷歌了,最后发现只需要在该工程下的hooks目录下放入pre-revprop-change.bat文件即可. pre ...
- python大文件迭代器的流式读取,之前一直使用readlines()对于大文件可以迅速充满内存,之前用法太野蛮暴力,要使用xreadlines或是直接是f,
#!/usr/bin/env python #encoding=utf-8 import codecs count =0L #for line in file("./search_click ...
- Transparency Tutorial with C# - Part 2
Download Compositing Mode demo project - 24 Kb Download Compositing Mode source - 26 Kb Download Com ...
- Oracle12C 怎样导入scott用户
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaG9uZ2thbmd3bA==/font/5a6L5L2T/fontsize/400/fill/I0JBQk ...
- oracle 12c 中asm元数据是否有所变化
详见原文博客链接地址: oracle 12c 中asm元数据是否有所变化