源地址:http://www.cnblogs.com/easymind223/archive/2012/07/03/2575277.html

 常用Photoshop的玩家都知道Unsharp Mask(USM)锐化,它是一种增强图像边缘的锐化算法,原理在此处,如果你想使用这个算法,强烈推荐看一下。本文进行一下简单的介绍,USM锐化一共分为三步,第一步生成原始图片src的模糊图片和高对比度图片,记为blur和contrast.第二,把src和blur作差,得到一张差分图片,记为diff,它就是下图的UnsharpMask。然后把src和contras按一定的比例相加,这个比例由diff控制,最终得到锐化图片。USM有一个缺点,锐化后最大和最小的像素值会超过原始图片,如下图红色虚线和白色实线所示。

 
代码如下:
void MyTreasureBox::UnsharpMask(const IplImage* src, IplImage* dst, float amount, float radius, uchar threshold, int contrast)
{
if(!src)return ; int imagewidth = src->width;
int imageheight = src->height;
int channel = src->nChannels; IplImage* blurimage = cvCreateImage(cvSize(imagewidth,imageheight), src->depth, channel);
IplImage* DiffImage = cvCreateImage(cvSize(imagewidth,imageheight), 8, channel); //原图的高对比度图像
IplImage* highcontrast = cvCreateImage(cvSize(imagewidth,imageheight), 8, channel);
AdjustContrast(src, highcontrast, contrast); //原图的模糊图像
cvSmooth(src, blurimage, CV_GAUSSIAN, radius); //原图与模糊图作差
for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
CvScalar ori = cvGet2D(src, y, x);
CvScalar blur = cvGet2D(blurimage, y, x);
CvScalar val;
val.val[0] = abs(ori.val[0] - blur.val[0]);
val.val[1] = abs(ori.val[1] - blur.val[1]);
val.val[2] = abs(ori.val[2] - blur.val[2]); cvSet2D(DiffImage, y, x, val);
}
} //锐化
for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
CvScalar hc = cvGet2D(highcontrast, y, x);
CvScalar diff = cvGet2D(DiffImage, y, x);
CvScalar ori = cvGet2D(src, y, x);
CvScalar val; for (int k=0; k<channel; k++)
{
if (diff.val[k] > threshold)
{
//最终图像 = 原始*(1-r) + 高对比*r
val.val[k] = ori.val[k] *(100-amount) + hc.val[k] *amount;
val.val[k] /= 100;
}
else
{
val.val[k] = ori.val[k];
}
}
cvSet2D(dst, y, x, val);
}
} cvReleaseImage(&blurimage);
cvReleaseImage(&DiffImage);
}

其中用到一个调整图像对比度的函数

void MyTreasureBox::AdjustContrast(const IplImage* src, IplImage* dst, int contrast)
{
if (!src)return ; int imagewidth = src->width;
int imageheight = src->height;
int channel = src->nChannels; //求原图均值
CvScalar mean = {0,0,0,0};
for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
CvScalar ori = cvGet2D(src, y, x);
for (int k=0; k<channel; k++)
{
mean.val[k] += ori.val[k];
}
}
}
for (int k=0; k<channel; k++)
{
mean.val[k] /= imagewidth * imageheight;
} //调整对比度
if (contrast <= -255)
{
//当增量等于-255时,是图像对比度的下端极限,此时,图像RGB各分量都等于阀值,图像呈全灰色,灰度图上只有1条线,即阀值灰度;
for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
cvSet2D(dst, y, x, mean);
}
}
}
else if(contrast > -255 && contrast <= 0)
{
//(1)nRGB = RGB + (RGB - Threshold) * Contrast / 255
// 当增量大于-255且小于0时,直接用上面的公式计算图像像素各分量
//公式中,nRGB表示调整后的R、G、B分量,RGB表示原图R、G、B分量,Threshold为给定的阀值,Contrast为处理过的对比度增量。
for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
CvScalar nRGB;
CvScalar ori = cvGet2D(src, y, x);
for (int k=0; k<channel; k++)
{
nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *contrast /255;
}
cvSet2D(dst, y, x, nRGB);
}
}
}
else if(contrast >0 && contrast <255)
{
//当增量大于0且小于255时,则先按下面公式(2)处理增量,然后再按上面公式(1)计算对比度:
//(2)、nContrast = 255 * 255 / (255 - Contrast) - 255
//公式中的nContrast为处理后的对比度增量,Contrast为给定的对比度增量。 CvScalar nRGB;
int nContrast = 255 *255 /(255 - contrast) - 255; for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
CvScalar ori = cvGet2D(src, y, x);
for (int k=0; k<channel; k++)
{
nRGB.val[k] = ori.val[k] + (ori.val[k] - mean.val[k]) *nContrast /255;
}
cvSet2D(dst, y, x, nRGB);
}
}
}
else
{
//当增量等于 255时,是图像对比度的上端极限,实际等于设置图像阀值,图像由最多八种颜色组成,灰度图上最多8条线,
//即红、黄、绿、青、蓝、紫及黑与白;
for (int y=0; y<imageheight; y++)
{
for (int x=0; x<imagewidth; x++)
{
CvScalar rgb;
CvScalar ori = cvGet2D(src, y, x);
for (int k=0; k<channel; k++)
{
if (ori.val[k] > mean.val[k])
{
rgb.val[k] = 255;
}
else
{
rgb.val[k] = 0;
}
}
cvSet2D(dst, y, x, rgb);
}
}
}
}

USM锐化之openCV实现,附赠调整对比度函数的更多相关文章

  1. OpenCV实现USM锐化与测试

    OpenCV实现USM锐化 [转]http://www.programdevelop.com/4964391/ USM (Unsharp masking) is a common operation ...

  2. C#调用GDI+1.1中的函数实现高斯模糊、USM锐化等经典效果。

    http://www.cnblogs.com/Imageshop/archive/2012/12/13/2815712.html 在GDI+1.1的版本中,MS加入不少新的特性,其中的特效类Effec ...

  3. 【Python】把文件名命名成canlendar.py竟然导致无法使用canlendar模块 附赠2020年月历

    这个bug困扰了我一阵,直到在 http://www.codingke.com/question/15489 找到了解决问题的钥匙,真是没想到居然是这个原因导致的. 下面是出错信息,可以看到只要目录下 ...

  4. 【SQL】靠谱的TRIM函数,附赠过程一枚

    SQL中有LTRIM和RTRIM这两个函数分别用于去除字符串的首.尾空格,缺乏常见的能同时去除首尾的TRIM函数,另外,这俩函数都只对[空格]有效,所以如果首尾是制表符.换行符等等[空白],它们是不处 ...

  5. SSE图像算法优化系列十六:经典USM锐化中的分支判断语句SSE实现的几种方法尝试。

    分支判断的语句一般来说是不太适合进行SSE优化的,因为他会破坏代码的并行性,但是也不是所有的都是这样的,在合适的场景中运用SSE还是能对分支预测进行一定的优化的,我们这里以某一个算法的部分代码为例进行 ...

  6. atitit  opencv apiattilax总结 约500个函数 .xlsx

    atitit  opencv apiattilax总结 约500个函数 .xlsx 1.1. CxCore中文参考手册 1 1.2. 机器学习中文参考手册  knn  svm  1 1.3. CvAu ...

  7. Python: PS 图像调整--对比度调整

    本文用 Python 实现 PS 里的图像调整–对比度调整.具体的算法原理如下: (1).nRGB = RGB + (RGB - Threshold) * Contrast / 255 公式中,nRG ...

  8. opencv:USM锐化

    USM:unsharp mask 对小的细节干扰小,对大的细节进行锐化 Mat dst; Mat blur_image; GaussianBlur(src, blur_image, Size(3, 3 ...

  9. hibernate内部测试题(附赠答案)

    一.选择题(共25题,每题2.5分,选择一项或多项,漏选错选不得分) 1.在Hibernate中,以下关于主键生成器说法错误的是( ). A.increment可以用于类型为long.short或by ...

随机推荐

  1. 用tomcat搭建web服务器

    链接地址:http://www.blogjava.net/qingshow/archive/2010/01/17/309846.html qingshow “不积跬步无以至千里,不积小流无以成江海”. ...

  2. H5前端面试题及答案(2)

    最近想着跳槽,但面试的邀约不多,内心有点烦躁.梳理梳理心情,跳槽季竞争也大,努力做好自己... 21.请设计一套方案,用于确保页面中js加载完全. <!doctype html> < ...

  3. docker学习笔记2:容器操作

    一.列出主机上已经创建的容器 docker ps -a 二.创建交互式容器 命令: docker run -i -t ubuntu /bin/bash 其中-i -t 表示创建一个提供交互式shell ...

  4. javascript:设置URL参数的方法,适合多条件查询

    适用场景:多条件查询情况,如下图所示: 通过设置URL参数,再结合数据源控件设置的RUL参数,就能进行简单的多条件查询了. javascript函数: <mce:script type=&quo ...

  5. 怎样实现多文件上传 在iOS开发中

    NSURL* url = [NSURL URLWithString:@"xxx"]; ASIFormDataRequest* request = [ASIFormDataReque ...

  6. 使用【百度云推送】第三方SDK实现推送功能具体解释

    之前介绍过怎样使用shareSDK实现新浪微博分享功能,今天介绍怎样使用百度云推送SDK实现Android手机后台推送功能. 执行效果例如以下 第一步,假设使用百度的SDK,当然要先成为百度的开发人员 ...

  7. android Gallery滑动不流畅的解决

    import android.content.Context; import android.util.AttributeSet; import android.view.KeyEvent; impo ...

  8. mysql死锁问题分析(转)

    线上某服务时不时报出如下异常(大约一天二十多次):“Deadlock found when trying to get lock;”. Oh, My God! 是死锁问题.尽管报错不多,对性能目前看来 ...

  9. Jquery Mobile转场特效之slide | 小小iPhone开发

    Jquery Mobile转场特效之slide | 小小iPhone开发 2012 Jquery Mobile转场特效之slide 作者:小小   发布:2012-12-12 14:03   分类:j ...

  10. 08-使用for循环输出杨辉三角(循环)

    /** * 使用循环输出杨辉三角 * * */ public class Test6 { public static void main(String[] args) { // 创建二维数组 int ...