【题目】#6395. 「THUPC2018」城市地铁规划 / City

【题意】给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值。\(n \leq 3000,k \leq 10\)。

【算法】背包DP+Prufer序

首先每个点度x的价值g(x)可以暴力预处理。将每个点的度-1后,就不再有树形态这个限制了,只要n个点的度加起来是n-2即可,因为此时只要让所有还原后度不为1的点连通,度为1的叶子节点直接分配。

问题转化为n-2个大小为x价值为g(x+1)的物品,求容量为n-2的完全背包的最大价值,复杂度\(O(n^2)\)。

这里的背包有个问题,就是大小为0的物品也是有价值的(必须n个点都计算),我的方法是所有价值先减g(1),最后再加n*g(1)。

构造方案的时候可以用n^2数组记录,也可以一步一步找最优大小退容量(因为是完全背包),每个点向上一个点连边使度不为1的点构成一条链,再从后往前分配叶子节点。

注意:根节点没有向上的路径,但是为了方便背包DP依然减掉一个度,最后构造方案的时候默认第一个点为根节点不往上连边即可。

还有要特殊处理n=1和n=2的情况,\(0^0=1\)。

#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=3010,MOD=59393;
int n,kind,as[20],g[maxn],f[maxn];
int main(){
scanf("%d%d",&n,&kind);
for(int i=0;i<=kind;i++)scanf("%d",&as[i]);
if(n==1){printf("%d %d",n-1,as[0]);return 0;}
for(int i=1;i<n;i++){
int x=1;
for(int j=0;j<=kind;j++){
g[i]=(g[i]+x*as[j])%MOD;
x=x*i%MOD;
}
if(i!=1)g[i]-=g[1];//
}
for(int i=1;i<=n-2;i++){
for(int j=i;j<=n-2;j++){
f[j]=max(f[j],f[j-i]+g[i+1]);
}
}
printf("%d %d\n",n-1,f[n-2]+n*g[1]);//
int x=n-2,id=0,y=n;
while(x){
for(int i=1;i<=x;i++)if(f[x-i]+g[i+1]==f[x]){
x-=i;
if(++id!=1)printf("%d %d\n",id-1,id);else i++;//
for(int j=1;j<i;j++)printf("%d %d\n",id,y--);
break;
}
}
if(n==2)id++;
printf("%d %d\n",id,id+1);//
return 0;
}

有没有发现算法里还有”Prufer序“这一项?很有意思的是,上面推到的结论就是Prufer序的结论。

从Prufer序的角度来考虑,题目和带标号无根树、点度密切相关,可以想到只需要构造一个Prufer序使得各点度+1的价值最大就行了。

问题转化为n-2个大小为x价值为g(x+1)的物品,求容量为n-2的完全背包的最大价值,复杂度\(O(n^2)\)。

【LibreOJ】#6395. 「THUPC2018」城市地铁规划 / City 背包DP+Prufer序的更多相关文章

  1. 【LibreOJ】#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop 线段树+完全背包

    [题目]#6396. 「THUPC2018」弗雷兹的玩具商店 / Toyshop [题意]给定一个长度为n的物品序列,每个物品有价值.不超过m的重量.要求支持以下三种操作:1.物品价值区间加减,2.物 ...

  2. 【LibreOJ】#6392. 「THUPC2018」密码学第三次小作业 / Rsa 扩展欧几里得算法

    [题目]#6392. 「THUPC2018」密码学第三次小作业 / Rsa [题意]T次询问,给定正整数c1,c2,e1,e2,N,求正整数m满足: \(c_1=m^{e_1} \ \ mod \ \ ...

  3. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  4. LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配

    #2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  5. LibreOJ #2006. 「SCOI2015」小凸玩矩阵 二分答案+二分匹配

    #2006. 「SCOI2015」小凸玩矩阵 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  6. LibreOJ #2036. 「SHOI2015」自动刷题机

    #2036. 「SHOI2015」自动刷题机 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 题目描述 曾经发明了信号增幅仪的发明家 SHTSC 又公开 ...

  7. 「bzoj1003」「ZJOI2006」物流运输 最短路+区间dp

    「bzoj1003」「ZJOI2006」物流运输---------------------------------------------------------------------------- ...

  8. 「bzoj1925」「Sdoi2010」地精部落 (计数型dp)

    「bzoj1925」「Sdoi2010」地精部落---------------------------------------------------------------------------- ...

  9. BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)

    题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...

随机推荐

  1. PAT甲题题解-1068. Find More Coins (30)-dp,01背包

    一开始没多想,虽然注意到数据N<=10^4的范围,想PAT的应该不会超时吧,就理所当然地用dfs做了,结果最后一组真的超时了.剪枝啥的还是过不了,就意识到肯定不是用dfs做了.直到看到别人说用0 ...

  2. underscore.js源码解析(一)

    一直想针对一个框架的源码好好的学习一下编程思想和技巧,提高一下自己的水平,但是看过一些框架的源码,都感觉看的莫名其妙,看不太懂,最后找到这个underscore.js由于这个比较简短,一千多行,而且读 ...

  3. [2017BUAA软工助教]个人得分总表(至alpha结束)

    一.表 学号 第0次 week1 week2 week3 个人项目 附加1 结对项目 附加2 a团队 a团队得分 a贡献分 总分(不计) 总分(记) 15061119 7 9.5 12 9 45.75 ...

  4. 《Linux内核分析》 第六周

    <Linux内核分析> 第6周 一.进程的描述 1.进程控制块PCB 2.linux下的进程转化图 TASK_RUNNING可以是就绪态或者执行态,具体取决于系统调用 TASK_ZOMBI ...

  5. vue 跳转路由传参数用法

    // 组件 a <template> <button @click="sendParams">传递</button> </template ...

  6. C语言变长数组data[0]

    1.前言 在刷题时遇到一个结构中包含char data[0],第一次见到时感觉很奇怪,数组的长度怎么可以为零呢?于是上网搜索一下这样的用法的目的,发现在linux内核中,结构体中经常用到data[0] ...

  7. ubuntu下java JDK环境配置

    ubuntu下配置JDK环境变量ubuntu下的JDK配置本质上和win一样的:1.去官网下载JDK,选择适合自己版本,我下载的版本是jdk-8u121-linunx-x64.tag.gz,官方网址h ...

  8. sqlbulkcopy 批量更新 数据库

    转载: http://blog.csdn.net/wangzh300/article/details/7382506 private static void DataTableToSQLServer( ...

  9. 【题解】 [HAOI2016]食物链 (拓扑排序)

    懒得复制,直接贴链接吧 Solution: 水题一道,注意单独一个点的不算在食物链中,也就是\(in[i]==0\) \(out[i]==0\)的点就不计算 Code: //It is coded b ...

  10. 【Revit API】墙体分割

    Revit中没有分割墙体的直接方法,一般采用调整原墙体的长度,再复制自身,调整复制体的长度.话不多说,直接上代码 public static void WallCopy(Document doc, X ...