[BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)
[BZOJ 1652][USACO 06FEB]Treats for the Cows
Description
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
Input
Line 1: A single integer,N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
Output
Line 1: The maximum revenue FJ can achieve by selling the treats
Solution
1.初始化
f[i][i]代表这个只有这个物品卖出的利润,显然此时f[i][i]=v[i],同时记录v[i]的前缀和,用于转移。
2.DP
方程为f[l][r]=max(f[l+1][r],f[l][r-1])+v[r]-v[l-1],答案由两种小1长度的区间得到,加上区间和代表所有区间内的物品都延迟一天卖出。
Code
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define R register
using namespace std;
int a[2010],v[2010],f[2010][2010];
inline int rd(){
int x=0;
bool f=1;
char c=getchar();
while(!isdigit(c)){
if(c=='-') f=0;
c=getchar();
}
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?x:-x;
}
int main(){
int n=rd();
for(R int i=1;i<=n;++i){
a[i]=f[i][i]=rd();
v[i]=v[i-1]+a[i];
}
for(R int len=2;len<=n;++len)
for(R int l=1;l<=n-len+1;++l){
int r=l+len-1;
f[l][r]=max(f[l+1][r],f[l][r-1])+v[r]-v[l-1];
}
printf("%d",f[1][n]);
return 0;
}
有关区间DP的其他讲解参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/9038198.html
[BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)的更多相关文章
- bzoj 1652: [Usaco2006 Feb]Treats for the Cows【区间dp】
裸的区间dp,设f[i][j]为区间(i,j)的答案,转移是f[i][j]=max(f[i+1][j]+a[i](n-j+i),f[i][j-1]+a[j]*(n-j+i)); #include< ...
- BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )
dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...
- BZOJ 1652: [Usaco2006 Feb]Treats for the Cows
题目 1652: [Usaco2006 Feb]Treats for the Cows Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 234 Solve ...
- 「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp
题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...
- poj 3186 Treats for the Cows(区间dp)
Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...
- kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)
Treats for the Cows Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7949 Accepted: 42 ...
- 【POJ - 3186】Treats for the Cows (区间dp)
Treats for the Cows 先搬中文 Descriptions: 给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次 ...
- Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925
题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...
- Luogu2858[USACO06FEB]奶牛零食Treats for the Cows (区间DP)
我是个傻逼,这么水的题都会T #include <iostream> #include <cstdio> #include <cstring> #include & ...
随机推荐
- Shell 基础 -- 流编辑器 sed 详解
一.流编辑器 sed 与命令 sed Linux 中,常使用流编辑器 sed 进行文本替换工作.与常使用的交互式编辑器(如vim)不同,sed 编辑器以批处理的方式来编辑文件,这比交互式编辑器快得多, ...
- Linux内核分析作业第三周
一.实验楼实验 使用实验楼的虚拟机打开shell 1 cd LinuxKernel/ 2 qemu -kernel linux-3.18.6/arch/x86/boot/bzImage -initrd ...
- 这个不是第一次作业----艰难的安装Android studio历程
之前只听说过eclipse,后来从室友处得知,还有一个安卓的开发工具叫做Android studio,上网百度后发现网友普遍说Android studio比eclipse快,没想太多,删E装A. 在装 ...
- 注册和卸载window service
自己开发的windows service编译之后会生成的exe文件,不能直接运行,必须通过工具注册进系统的Service. 使用cmd运行命令执行注册和卸载: 注册service: C:\Window ...
- 从零开始学Kotlin-控制语句(4)
从零开始学Kotlin基础篇系列文章 条件控制-if var a=10 var b=20 if(a>b) print(a) if(a>b){ print(a) }else{ print(b ...
- Jira 的 数据库备份恢复 简单过程
1 发现jira的备份恢复很简单, 只需要导入导出一个zip包即可 导出 选择系统 管理员入口登录 选择导入导出 进行备份系统数据 选择一个文件名就能备份 备份结果 将文件copy到上一一级目录的 i ...
- Jquery 临时
<!--微信小程序--> <div id="page1" class="page page1"> <nav> <div ...
- SparkException: Master removed our application
come from https://stackoverflow.com/questions/32245498/sparkexception-master-removed-our-application ...
- LOJ#551 Matrix
本地打表在线AC什么的最喜欢了. 题意 \(\rm Alice\)和\(\rm Bob\)在玩游戏,他们要给一个\(n\times n\)的矩阵打标记.初始时没有任何标记,每一轮\(\rm Bob\) ...
- 【题解】Luogu P2047 社交网络总结 (Floyd算法,最短路计数)
题目描述 在社交网络(social network)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题.在一个社交圈子里有n个人,人与人之间有不同程度的关系.我 们将这个关系网络对 ...