[BZOJ 1652][USACO 06FEB]Treats for the Cows

Description

FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time. The treats are interesting for many reasons: * The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats. * Like fine wines and delicious cheeses, the treats improve with age and command greater prices. * The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000). * Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a. Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally? The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:

•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每

天可以从盒子的任一端取出最外面的一个.

•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.

•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).

•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.

Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.

Input

Line 1: A single integer,N

Lines 2..N+1: Line i+1 contains the value of treat v(i)

Output

Line 1: The maximum revenue FJ can achieve by selling the treats

Solution

1.初始化

f[i][i]代表这个只有这个物品卖出的利润,显然此时f[i][i]=v[i],同时记录v[i]的前缀和,用于转移。

2.DP

方程为f[l][r]=max(f[l+1][r],f[l][r-1])+v[r]-v[l-1],答案由两种小1长度的区间得到,加上区间和代表所有区间内的物品都延迟一天卖出。

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define R register
using namespace std; int a[2010],v[2010],f[2010][2010]; inline int rd(){
int x=0;
bool f=1;
char c=getchar();
while(!isdigit(c)){
if(c=='-') f=0;
c=getchar();
}
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return f?x:-x;
} int main(){
int n=rd();
for(R int i=1;i<=n;++i){
a[i]=f[i][i]=rd();
v[i]=v[i-1]+a[i];
}
for(R int len=2;len<=n;++len)
for(R int l=1;l<=n-len+1;++l){
int r=l+len-1;
f[l][r]=max(f[l+1][r],f[l][r-1])+v[r]-v[l-1];
}
printf("%d",f[1][n]);
return 0;
}

有关区间DP的其他讲解参考我的随笔:http://www.cnblogs.com/COLIN-LIGHTNING/p/9038198.html

[BZOJ 1652][USACO 06FEB]Treats for the Cows 题解(区间DP)的更多相关文章

  1. bzoj 1652: [Usaco2006 Feb]Treats for the Cows【区间dp】

    裸的区间dp,设f[i][j]为区间(i,j)的答案,转移是f[i][j]=max(f[i+1][j]+a[i](n-j+i),f[i][j-1]+a[j]*(n-j+i)); #include< ...

  2. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows( dp )

    dp( L , R ) = max( dp( L + 1 , R ) + V_L * ( n - R + L ) , dp( L , R - 1 ) + V_R * ( n - R + L ) ) 边 ...

  3. BZOJ 1652: [Usaco2006 Feb]Treats for the Cows

    题目 1652: [Usaco2006 Feb]Treats for the Cows Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 234  Solve ...

  4. 「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp

    题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...

  5. poj 3186 Treats for the Cows(区间dp)

    Description FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for gi ...

  6. kuangbin专题十二 POJ3186 Treats for the Cows (区间dp)

    Treats for the Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7949   Accepted: 42 ...

  7. 【POJ - 3186】Treats for the Cows (区间dp)

    Treats for the Cows 先搬中文 Descriptions: 给你n个数字v(1),v(2),...,v(n-1),v(n),每次你可以取出最左端的数字或者取出最右端的数字,一共取n次 ...

  8. Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925

    题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...

  9. Luogu2858[USACO06FEB]奶牛零食Treats for the Cows (区间DP)

    我是个傻逼,这么水的题都会T #include <iostream> #include <cstdio> #include <cstring> #include & ...

随机推荐

  1. 利用十字链表压缩稀疏矩阵(c++)-- 数据结构

    题目: 7-1 稀疏矩阵 (30 分)   如果一个矩阵中,0元素占据了矩阵的大部分,那么这个矩阵称为“稀疏矩阵”.对于稀疏矩阵,传统的二维数组存储方式,会使用大量的内存来存储0,从而浪费大量内存.为 ...

  2. Intellij Idea 创建JavaWeb项目入门(一)

    Idea创建JavaWeb项目步骤:1.打开Intellij Idea IDE,然后点击Create New Project 2.左侧选择Java Enterprise,右侧选择Web Applica ...

  3. js生成uuid代码

    function uuid() { var s = []; var hexDigits = "0123456789abcdef"; for (var i = 0; i < 3 ...

  4. 关于maven:调整你的maven的jdk版本为 xxxx

    找到你的.m2文件 在里面添加一下信息 实例  将其更改成1.7 <profiles> <profile> <id>jdk-1.7</id> <! ...

  5. Leetcode题库——36.有效的数独

    @author: ZZQ @software: PyCharm @file: leetcode36_isValidSudoku.py @time: 2018/11/19 19:27 要求:判断一个 9 ...

  6. ElasticSearch 2 (36) - 信息聚合系列之显著项

    ElasticSearch 2 (36) - 信息聚合系列之显著项 摘要 significant_terms(SigTerms)聚合与其他聚合都不相同.目前为止我们看到的所有聚合在本质上都是简单的数学 ...

  7. Linux命令学习chroot和chmode

    chroot:chang root http://man.linuxde.net/chroot https://baike.baidu.com/item/chroot 1.限制被CHROOT的使用者所 ...

  8. Linux命令(一) pwd ,cd

    1.pwd命令 以绝对路径的方式显示当前所处的工作目录,从根目录 / 开始,每一级目录用 / 分隔.第一个 / 表示根目录,最后一个目录是当前目录.当不知道当前处于哪个目录的时候,使用 pwd 命令就 ...

  9. Prometheus 和 Grafana的简单学习

    1. 下载 暂时不采用 docker化部署 prometheus下载地址 https://github.com/prometheus/prometheus/releases/ prometheus的e ...

  10. 【华为机试】—— 15.求int型正整数在内存中存储时1的个数

    题目 解法 import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner ...