微信上的“程序员的那些事”想必是很多码农们关注的公众账号之一,我也是其粉丝,每天都会看看里面有没有什么趣事,前段时间“程序员的那些事”分享了一篇博文《我的Twitter技术面试失败了》挺有意思,链接如下http://mp.weixin.qq.com/mp/appmsg/show?__biz=MjM5OTA1MDUyMA==&appmsgid=10000710&itemidx=1&sign=fab77147279ef685c50e39cc06623e5d&uin=MjM3Mjc1NTIwMA%3D%3D&key=38b17fed399880fb7129f69083fd038240b4873f89a22a1bf82803ef35479ff9dda602589570716d1a73ae7c3e9f739d&devicetype=android-17&version=25000105&lang=zh_CN

  里面说到了一道算法题,给出一个数组,将其转化为二维坐标系的点,并且连接每个点形成一个“容器”状的图形,问“容器”能装多少水(详情参照上面的链接)。这道题吸引我的原因是,每当说到算法题,许多公司总是喜欢考一些查找、排序、大数据处理等等,没什么多新意,也考不了程序员的思维能力(面试前复习下《数据结构》即可);而这道题很有新意,引发了我做一做的欲望,顺便也开拓一下思维,毕竟在实际工作中还是很少用到算法的。

  第一次解题:思路很自然地想到从左到右遍历数组,确定左右底部的位置(即一个“蓄水区域”),进行一次容积的计算,然后将指针移动到此“蓄水区域”的右侧,继续确定下一个“蓄水区域” 的左右底部位置,再进行一次容积的计算...直到数组最右端,代码如下:

 /*
* waterHolder.c
*
* Created on: 2013-11-5
* Author: pengyiming
* Description: 1,输入如下的非负数组(2, 5, 1, 2, 4),将其转化到二维坐标系中的点((2, 0), (2, 1), (5, 1), (5, 2), (1, 2), (1, 3), (2, 3), (2, 4), (4, 4), (4, 5))
* 2,连接上述个点形成一个"容器"
* 试问"容器"可装多少水,以1x1方格为单位
* Answer: 第一次遍历,从左向右遍历数组,找出左右侧最高点
* 第二次遍历,遍历左右侧最高点之间的数组,计算容积
*/ #include <stdio.h> /* 宏begin */
#define TRUE 1
#define FALSE 0
/* 宏end */ /* 输入数据begin */
static const unsigned int WATER_BUCKET[] = { , , , , , , , , };
/* 输入数据end */ int main(int argc, char *argv[])
{
int volume = ; // "容器"左右侧高度,底部高度
int leftHeight = ;
int bottomHeight = ;
int rightHeight = ; // "容器"左右侧高度,底部高度位置
int leftPos = ;
int bottomPos = ;
int rightPos = ; // "容器"左侧高度,底部高度确定状态
int leftPosOK = FALSE;
int bottomPosOK = FALSE; // 遍历数组以获取"容器"中的每个蓄水区域
int length = sizeof(WATER_BUCKET) / sizeof(unsigned int);
while (TRUE)
{
int i;
for (i = rightPos; i < length; i++)
{
// 寻找左侧位置
if (!leftPosOK && WATER_BUCKET[i] >= leftHeight)
{
leftHeight = WATER_BUCKET[i];
leftPos = i; bottomHeight = WATER_BUCKET[i];
} // 寻找底部位置,确定左侧位置
if (!bottomPosOK && (WATER_BUCKET[i] < bottomHeight))
{
bottomHeight = WATER_BUCKET[i];
bottomPos = i; leftPosOK = TRUE;
rightHeight = WATER_BUCKET[i];
} // 寻找右侧位置,确定底部位置
if (leftPosOK && (WATER_BUCKET[i] > rightHeight))
{
rightHeight = WATER_BUCKET[i];
rightPos = i; bottomPosOK = TRUE; // 优化:若右侧高度已经大于等于左侧高度,则已确定右侧位置,无需遍历完数组
if (rightHeight >= leftHeight)
{
break;
}
} printf("loop : left = %d, right = %d, bottom = %d\n", leftPos, rightPos, bottomPos);
} if (bottomPos > leftPos
&& rightPos > bottomPos)
{
volume += countVolume(leftPos, rightPos, bottomPos); // 重置并计算下一个"蓄水区域"
leftHeight = ;
bottomHeight = ;
rightHeight = ; leftPos = rightPos;
bottomPos = rightPos; leftPosOK = FALSE;
bottomPosOK = FALSE;
}
else
{
// 可能在"容器"中有多个蓄水区域,遍历可能需要多次,设定一个变量标识是否找到蓄水区域,当找不到时退出
break;
}
} printf("total volume = %d\n", volume); return ;
} int countVolume(int leftPos, int rightPos, int bottomPos)
{
printf("count volume : left = %d, right = %d, bottom = %d\n", leftPos, rightPos, bottomPos); if (WATER_BUCKET[leftPos] == WATER_BUCKET[bottomPos]
|| WATER_BUCKET[rightPos] == WATER_BUCKET[bottomPos])
{
return ;
} // "容器"能装多少水取决于最短一侧的高度
int minHeight = WATER_BUCKET[leftPos];
if (minHeight > WATER_BUCKET[rightPos])
{
minHeight = WATER_BUCKET[rightPos];
} int volume = ;
int i;
for (i = leftPos + ; i < rightPos; i++)
{
volume += minHeight - WATER_BUCKET[i];
} return volume;
}

  上述算法通过了链接中及我自己列举的测试用例,说明上述代码确实能工作,但是其中掺杂了太多奇怪的boolean变量来帮助确定左右底部的位置,这使得代码可读性不好,且逻辑不够清晰,最近发完版后又闲下来了,重新理解了一下链接中的解题思路,确实比这段算法的思路清晰很多。

  第二次解题:第一次遍历确定“容器”最高点,从而将“容器”一分为二,接下来只要分别确定“容器”左右侧最高点,并计算左右侧容积即可(“容器”左右侧最高点必定小于“容器”最高点,根据“木桶原理”,用左右侧最高点计算容积)。

  多插一句,给出的数组是线性的,但是不见得非要从左到右遍历去解决问题,可以试一试上面这种分治的思路,线性的数组一分为二,分别通过左右两侧的子遍历来解决问题,代码如下:

 /*
* waterHolder2.c
*
* Created on: 2013-11-19
* Author: pengyiming
* Description: 1,输入如下的非负数组(2, 5, 1, 2, 4),将其转化到二维坐标系中的点((2, 0), (2, 1), (5, 1), (5, 2), (1, 2), (1, 3), (2, 3), (2, 4), (4, 4), (4, 5))
* 2,连接上述个点形成一个"容器"
* 试问"容器"可装多少水,以1x1方格为单位
* Answer: 第一次遍历,遍历整个数组,找出最高点
* 第二次遍历,分为两个子遍历最高点左右侧的数组,计算容积
*/ #include <stdio.h> /* 宏begin */
/* 宏end */ /* 输入数据begin */
static const unsigned int WATER_BUCKET[] = { , , , , , , , , };
/* 输入数据end */ int main(int argc, char *argv[])
{
int length = sizeof(WATER_BUCKET) / sizeof(unsigned int);
int volume = ; int maxPos = findMaxPos(length); volume += countLeftVolume(maxPos);
volume += countRightVolume(length, maxPos);
printf("total volume = %d\n", volume);
} int findMaxPos(int length)
{
int max = ;
int maxPos = ;
int i;
for (i = ; i < length; i++)
{
if (WATER_BUCKET[i] > max)
{
max = WATER_BUCKET[i];
maxPos = i;
}
} return maxPos;
} int countLeftVolume(int maxPos)
{
int volume = ;
int leftMax = ;
int i;
for (i = ;i < maxPos; i++)
{
if (leftMax >= WATER_BUCKET[i])
{
volume += leftMax - WATER_BUCKET[i];
}
else
{
leftMax = WATER_BUCKET[i];
}
} printf("left volume = %d\n", volume);
return volume;
} int countRightVolume(int length, int maxPos)
{
int volume = ;
int rightMax = ;
int i;
for (i = length - ; i > maxPos; i--)
{
if (rightMax >= WATER_BUCKET[i])
{
volume += rightMax - WATER_BUCKET[i];
}
else
{
rightMax = WATER_BUCKET[i];
}
} printf("right volume = %d\n", volume);
return volume;
}

  上述算法也通过了链接中及我自己列举的测试用例,如果大家还有什么更好的解法,欢迎不啬赐教!

记一道有趣的Twitter面试题的更多相关文章

  1. 一道有趣的Twitter技术面试题

    来自:http://blog.jobbole.com/50705/ 看下面这个图片” “在这个图片里我们有不同高度的墙.这个图片由一个整数数组所代表,数组中每个数是墙的高度.上边的图可以表示为数组[2 ...

  2. javascript基础修炼(13)——记一道有趣的JS脑洞练习题

    目录 一. 题目 二. 解法风暴 示例代码托管在:http://www.github.com/dashnowords/blogs 博客园地址:<大史住在大前端>原创博文目录 华为云社区地址 ...

  3. javascript基础修炼(13)——记一道有趣的JS脑洞练习题【华为云技术分享】

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/devcloud/article/detai ...

  4. 一道关于String的面试题,新鲜出炉,刚被坑过,趁热!!

    很多人都会答错的一道关于String的题目,究竟有什么难度? 我们一起来看一道关于String的面试题,准确说是改编的面试题! 准备好啦?在放大招之前先来一个小招式 String s1 = new S ...

  5. 一道有趣的for循环题

    一道有趣的for循环题 今天在复习js基础知识时发现了一个for循环的题,第一眼看到直接懵逼了,没想到for循环竟然还可以这样玩?涨姿势了. 题目是这样的 for(i=0, j=0; i<10, ...

  6. codeforces 1451D,一道有趣的博弈论问题

    大家好,欢迎来到codeforces专题. 今天选择的问题是Contest 1451场的D题,这是一道有趣简单的伪博弈论问题,全场通过的人有3203人.难度不太高,依旧以思维为主,坑不多,非常友好. ...

  7. 一道Twitter面试题的解答

    前言 这道面试题是我在博客园首页的一篇文章中看到的,面试题我简单的提取出来了,文章链接:http://news.cnblogs.com/n/192014/. 在我用JS实现了我自己的想法之后,我再一次 ...

  8. 一道Twitter面试题

    在微博上看到的这个问题,忍住没看答案自己解决了.建议没看过的同学也自己先尝试下. “看下面这个图片” 在这个图片里我们有不同高度的墙.这个图片由一个整数数组所代表,数组中每个数是墙的高度.上边的图可以 ...

  9. 记一道css面试题 : 三栏布局两边宽度固定,中间宽度自适应,并且布局随屏幕大小改变。

    前几天面试时有道css题没做出来,回来好好学习一番后把其记录下来. 题目是这样的:左中右三栏布局,左右两栏宽度固定,左右两栏的宽度为200像素,中间栏宽度自适应.当屏幕小于600px时,3栏会分别占用 ...

随机推荐

  1. 华为云Istio服务网格,让应用治理智能化、可视化

  2. 团队作业Week6:规格说明书编写

    (1)请分析你们团队项目的典型用户和场景,并写一个团队博客发布你们团队项目的功能规格说明书. (2)再写一个博客团队博客发布你们项目的设计文档(技术规格说明书). 截止时间:2015-11-03

  3. 11.5 Daily Scrum

    请把现在当成11月5日······   Today's tasks  Tomorrow's tasks 丁辛 餐厅列表数据结构设计 餐厅列表UI设计             李承晗           ...

  4. 【MOOC EXP】Linux内核分析实验五报告

    程涵  原创博客 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 分析system_call中断处理过程 ...

  5. C++:同名隐藏和赋值兼容规则

    一.同名隐藏 同名隐藏,即在C++的继承中,只要子类的函数名和父类的函数名相同,子类中的函数将会隐藏所有父类中和子类的成员函数同名的函数 特别注意: 和函数之间的重载不同,这里只要求函数的名字相同,而 ...

  6. VS系列软件中debug和release编译环境有什么区别

    当编译和执行一个工程时,可以在Debug和Release两种配置下执行. Debug模式用于调试程序,这是个受保护的运行环境,它将告诉你程序是否有泄露,在运行时也能对特定函数的结果进行检查.然而它生成 ...

  7. Alpha答辩总结

    [Alpha展示评审表格] 小组序号 小组名称 格式(20%) 内容(20%) PPT(20%) 演讲(20%) 答辩(20%) 总分 1 天机组 15 15 15 15 16 76 2 PMS 16 ...

  8. php多进程pcntl学习(一)

    pcntl在windows下无法使用,linux编译php时加上参数--enable-pcntl 即可.第一次使用pcntl模块,遇到了一些坑也慢慢填上了,这里简单记录下. 1. 子进程之间变量无法共 ...

  9. SQLSERVER 设置自动备份数据库

    1. SQLSERVER 简单的设置 计划任务 进行 备份数据库的操作. 首先需要打开 一些设置 执行 命令如下: sp_configure ; GO RECONFIGURE; GO sp_confi ...

  10. golang yaml配置文件解析

    yaml文件语法 此模块内容转自:http://www.ruanyifeng.com/blog/2016/07/yaml.html 大小写敏感 使用缩进表示层级关系 缩进时不允许使用Tab键,只允许使 ...