P2325 [SCOI2005]王室联邦

题目描述

“余”人国的国王想重新编制他的国家。他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理。

他的国家有\(n\)个城市,编号为\(1\dots n\)。一些城市之间有道路相连,任意两个不同的城市之间有且仅有一条直接或间接的道路。为了防止管理太过分散,每个省至少要有\(B\)个城市,为了能有效的管理,每个省最多只有\(3B\)个城市。

每个省必须有一个省会,这个省会可以位于省内,也可以在该省外。但是该省的任意一个城市到达省会所经过的道路上的城市(除了最后一个城市,即该省省会)都必须属于该省。

一个城市可以作为多个省的省会。

聪明的你快帮帮这个国王吧!

输入输出格式

输入格式:

第一行包含两个数\(N\),\(B\)(\(1\le N\le 1000, 1\le B \le N\))。接下来\(N-1\)行,每行描述一条边,包含两个数,即这条边连接的两个城市的编号。

输出格式:

如果无法满足国王的要求,输出\(0\)。

否则第一行输出数\(K\),表示你给出的划分方案中省的个数,编号为\(1\dots K\)。

第二行输出\(N\)个数,第\(i\)个数表示编号为\(i\)的城市属于的省的编号。

第三行输出\(K\)个数,表示这\(K\)个省的省会的城市编号,如果有多种方案,你可以输出任意一种。


这里扔一个偷来的图片,顺便问下这是哪个ppt呀

一种树分块的方法...我还不知道这东西的实际意义

记录当前点的栈顶,然后每遍历完一个儿子,如果栈顶-记录点的个数大于\(B\),就以这个点为首都扔出来,最后把这个点加进去。

如果最后有剩,放到最后一个点形成的首都里就行了,可以证明不超过\(3B\)


Code:

#include <cstdio>
const int N=1e3+10;
int head[N],to[N<<1],Next[N<<1],cnt;
int n,B,s[N],rt[N],bel[N],tot,top;
void add(int u,int v)
{
to[++cnt]=v,Next[cnt]=head[u],head[u]=cnt;
}
void dfs(int now,int fa)
{
int bot=top;
for(int v,i=head[now];i;i=Next[i])
if((v=to[i])!=fa)
{
dfs(v,now);
if(top-bot>=B)
{
rt[++tot]=now;
while(top!=bot) bel[s[top--]]=tot;
}
}
s[++top]=now;
}
int main()
{
scanf("%d%d",&n,&B);
for(int u,v,i=1;i<n;i++) scanf("%d%d",&u,&v),add(u,v),add(v,u);
dfs(1,0);
while(top) bel[s[top--]]=tot;
printf("%d\n",tot);
for(int i=1;i<=n;i++) printf("%d ",bel[i]);
puts("");
for(int i=1;i<=tot;i++) printf("%d ",rt[i]);
return 0;
}

2019.1.6

P2325 [SCOI2005]王室联邦 解题报告的更多相关文章

  1. 洛谷P2325 [SCOI2005]王室联邦

    P2325 [SCOI2005]王室联邦 题目描述 "余"人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理. 他的国家有n个城市, ...

  2. P2325 [SCOI2005]王室联邦

    题目描述 “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的一个成员来管理. 他的国家有n个城市,编号为1..n.一些城市之间有道路相连,任意两个不同的城市之间 ...

  3. 洛谷 P2325 [SCOI2005]王室联邦

    简化版题意: 一个国家由\(n\)个城市组成一颗树,要将其划分为\(n\)个省 每个城市大小为\([B,3B]\),每个省有一个省会(不一定要在省内),使得每个省的所有城市到省会的路径上不能经过其他省 ...

  4. luogu P2325 [SCOI2005]王室联邦

    传送门 做法是dfs整棵树,当访问一个点\(x\)时,先访问儿子,若某个时刻子树大小\(\ge b\)时,就把那些点放在一个省里,省会记为\(x\),访问完儿子再把\(x\)加入栈.最后栈中剩余的没加 ...

  5. BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1399  Solved: ...

  6. 【块状树】BZOJ 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 826  Solved:  ...

  7. 1086: [SCOI2005]王室联邦

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1554  Solved: ...

  8. bzoj1086 [SCOI2005]王室联邦 树分块

    [bzoj1086][SCOI2005]王室联邦 2014年11月14日2,6590 Description “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每个省都由他们王室联邦的 ...

  9. Bzoj 1086: [SCOI2005]王室联邦(分块)

    1086: [SCOI2005]王室联邦 Time Limit: 10 Sec Memory Limit: 162 MBSec Special Judge Submit: 1557 Solved: 9 ...

随机推荐

  1. HUE的安装

    HUE: Hadoop User Experience 官网地址:http://gethue.com/ Hue官网无法下载,超时. 使用CDH版本安装. 下载地址: http://archive.cl ...

  2. 20155202张旭 Exp4 恶意代码分析

    20155202张旭 Exp4 恶意代码分析 实验前问题回答: 一:如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些,用什么方法来 ...

  3. 20155209 林虹宇 Exp 8 Web基础

    Exp 8 Web基础 Web前端HTML 正常安装.启停Apache kali本机自带apache,上个实验已经使用过,直接使用 查看80端口. 127.0.0.1 编写一个含有表单的html 在浏 ...

  4. 20155323刘威良《网络对抗》Exp5 MSF基础应用

    20155323刘威良<网络对抗>Exp5 MSF基础应用 实践内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: 1.1一个主动攻击实 ...

  5. P2371 [国家集训队]墨墨的等式

    膜意义下最短路. 把最小的\(a\)抠出来,作为模数\(mod\),然后建点编号为\(0\)到\(mod-1\),对每个数\(a\)连边\((i,(a+i)\mod mod)\)点\(i\)的最短路就 ...

  6. [BZOJ4144][AMPPZ2014]Petrol[多源最短路+MST]

    题意 题目链接 分析 假设在 \(a \rightarrow b\) 的最短路径中出现了一个点 \(x\) 满足到 \(x\) 最近的点是 \(c\) ,那么我们完全可以从 \(a\) 直接走到 \( ...

  7. 带WIFI模块布局布线要点。

    带WIFI模块布局布线要求: 1: RF底部不能铺铜要挖空不能有GND否则RF信号会被耦合掉从而无法发送出去. 2:WIFI模块下方不能打孔尽量不走线不打孔避开其他信号穿过下方,要整体的铺铜 3:连接 ...

  8. Stm32l151+mpu6050+uart读取数据调试

    新近买了一个MPU6050模块,如上图,这个模块上的三块黑色分别是:稳压芯片662K,STM8s003f3p6,MPU6050. 根据此模块的说明书,可以使用USB转TTL将模块与上位机连接,通过卖家 ...

  9. B1048 数字加密

    15/20 #include<bits/stdc++.h> using namespace std; stack<int> s; char a[3]={'J','Q','K'} ...

  10. 基于tensorflow使用全连接层函数实现多层神经网络并保存和读取模型

    使用之前那个格式写法到后面层数多的话会很乱,所以编写了一个函数创建层,这样看起来可读性高点也更方便整理后期修改维护 #全连接层函数 def fcn_layer( inputs, #输入数据 input ...