MT【194】又见和式变换
(2007浙江省赛B卷最后一题)设$\sum\limits_{i=1}^{n}{x_i}=1,x_i>0,$求证:$n\sum\limits_{i=1}^n{x_i^2}-\sum\limits_{i<j}{\dfrac{(x_i-x_j)^2}{x_i+x_j}}\le1$

证明:
\begin{align*}
& n\sum\limits_{i=1}^n{x_i^2}-\sum\limits_{i<j}{\dfrac{(x_i-x_j)^2}{x_i+x_j}} \\
&=(\sum\limits_{i=1}^n{x_i})^2+\sum\limits_{i<j}{(x_i-x_j)^2}-\sum\limits_{i<j}{\dfrac{(x_i-x_j)^2}{x_i+x_j}}\\
&=1+\sum\limits_{i<j}{\dfrac{(x_i-x_j)^2(x_i+x_j-1)}{x_i+x_j}}\le1
\end{align*}
MT【194】又见和式变换的更多相关文章
- MT【149】和式变形
(2018浙江省赛14题)将$2n(n\ge2)$个不同的整数分成两组$a_1,a_2,\cdots,a_n;b_1,b_2,\cdots,b_n$.证明:$\sum\limits_{1\le i\l ...
- 《Real Time Rendering》第四章 图形变换
图形变换是一个将例如点.向量或者颜色等实体进行某种转换的操作.对于计算机图形学的先驱者,掌握图形变换是极为重要的.有了他们,你就可以对象.光源以及摄像机进行定位,变形以及动画添加.你也可以确认所有的计 ...
- BZOJ3197 & 组合乱搞
Description 求\[\sum_{i = 1}^{n}i^m m^i , m \leq 1000 \] 的值.Solution From Miskcoo's Space: ...
- Opencv 3入门(毛星云)摘要
第一章 环境搭建: 1. 环境变量path 添加 D:\Program Files\opencv\build\x86\vc11\bin 2. VS在VC++项目中,属性管理器\属性. VC++目 ...
- 【OpenCV新手教程之十八】OpenCV仿射变换 & SURF特征点描写叙述合辑
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨) ...
- EasyPR源码剖析(5):车牌定位之偏斜扭转
一.简介 通过颜色定位和Sobel算子定位可以计算出一个个的矩形区域,这些区域都是潜在车牌区域,但是在进行SVM判别是否是车牌之前,还需要进行一定的处理.主要是考虑到以下几个问题: 1.定位区域存在一 ...
- CF917D Stranger Trees
CF917D Stranger Trees 题目描述 给定一个树,对于每个\(k=0,1\cdots n-1\),问有多少个生成树与给定树有\(k\)条边重合. 矩阵树定理+高斯消元 我们答案为\(f ...
- 【BZOJ2820】YY的GCD
[BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
随机推荐
- 20155229《网络对抗技术》Exp3:免杀原理与实践
实验预习 免杀: 看为一种能使病毒木马避免被杀毒软件查杀的技术. 免杀的分类: 开源免杀:指在有病毒.木马源代码的前提下,通过修改源代码进行免杀.. 手工免杀:指在仅有病毒.木马的可执行文件(.exe ...
- 20155306 白皎 0day漏洞——漏洞利用原理之栈溢出利用
20155306 白皎 0day漏洞--漏洞利用原理之栈溢出利用 一.系统栈的工作原理 1.1内存的用途 根据不同的操作系统,一个进程可能被分配到不同的内存区域去执行.但是不管什么样的操作系统.什么样 ...
- Exp6
实验内容 一.公开渠道信息搜集 本次信息搜集在metasploit平台上实现(使用msfconsole命令进入) 1.通过DNS和IP挖掘信息 (1)使用whois进行域名信息查询 使用原因:目前互联 ...
- JavaEE笔记(十)
#Spring 为了配置bean对象和维护bean对象之间关系的一个容器框架 #三种注入方法 1 Setter注入2 构造参数注入3 注解注入(原理同1) #自动装配(autowire) 模式 说明 ...
- libgdx学习记录1——图片显示Texture
libgdx底层采用opengl渲染,对图片进行了优化处理,与android原生态的bitmap不太一样. 相比而言,效率要高一些,不过只支持png,jpg,bmp三种格式. 显示中,一般将图片放在a ...
- 设计模式 笔记 代理模式 Proxy
//---------------------------15/04/21---------------------------- //Proxy 代理模式-----对象结构型模式 /* 1:意图: ...
- iOSApp上下有黑边
如图: 这种情况就是没有启动页导致的,加了启动页图片之后就不会再出现了. 设置启动页的方法: http://www.cnblogs.com/BK-12345/p/5218229.html 有的人说我加 ...
- docker之容器管理
一.docker常用的创建命令 [root@node03 ~]# docker create --help [root@node03 ~]# docker run --help OPTIONS说明: ...
- 浅谈String模块ascii_letters和digits
本文介绍string模块ascii_letters和digits方法,其中ascii_letters是生成所有字母,从a-z和A-Z,digits是生成所有数字0-9. 示例如下: In [2]: c ...
- 【转】浅谈php://filter的妙用
php://filter是PHP中独有的协议,利用这个协议可以创造很多“妙用”,本文说几个有意思的点,剩下的大家自己下去体会. XXE中的使用 php://filter之前最常出镜的地方是XXE.由于 ...