King
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14791   Accepted: 5226

Description

Once, in one kingdom, there was a queen and that queen was expecting a baby. The queen prayed: ``If my child was a son and if only he was a sound king.'' After nine months her child was born, and indeed, she gave birth to a nice son.
Unfortunately, as it used to happen in royal families, the son was a little retarded. After many years of study he was able just to add integer numbers and to compare whether the result is greater or less than a given integer number. In addition, the numbers had to be written in a sequence and he was able to sum just continuous subsequences of the sequence.

The old king was very unhappy of his son. But he was ready to make everything to enable his son to govern the kingdom after his death. With regards to his son's skills he decided that every problem the king had to decide about had to be presented in a form of a finite sequence of integer numbers and the decision about it would be done by stating an integer constraint (i.e. an upper or lower limit) for the sum of that sequence. In this way there was at least some hope that his son would be able to make some decisions.

After the old king died, the young king began to reign. But very soon, a lot of people became very unsatisfied with his decisions and decided to dethrone him. They tried to do it by proving that his decisions were wrong.

Therefore some conspirators presented to the young king a set of problems that he had to decide about. The set of problems was in the form of subsequences Si = {aSi, aSi+1, ..., aSi+ni} of a sequence S = {a1, a2, ..., an}. The king thought a minute and then decided, i.e. he set for the sum aSi + aSi+1 + ... + aSi+ni of each subsequence Si an integer constraint ki (i.e. aSi + aSi+1 + ... + aSi+ni < ki or aSi + aSi+1 + ... + aSi+ni > ki resp.) and declared these constraints as his decisions.

After a while he realized that some of his decisions were wrong. He could not revoke the declared constraints but trying to save himself he decided to fake the sequence that he was given. He ordered to his advisors to find such a sequence S that would satisfy the constraints he set. Help the advisors of the king and write a program that decides whether such a sequence exists or not.

Input

The input consists of blocks of lines. Each block except the last corresponds to one set of problems and king's decisions about them. In the first line of the block there are integers n, and m where 0 < n <= 100 is length of the sequence S and 0 < m <= 100 is the number of subsequences Si. Next m lines contain particular decisions coded in the form of quadruples si, ni, oi, ki, where oi represents operator > (coded as gt) or operator < (coded as lt) respectively. The symbols si, ni and ki have the meaning described above. The last block consists of just one line containing 0.

Output

The output contains the lines corresponding to the blocks in the input. A line contains text successful conspiracy when such a sequence does not exist. Otherwise it contains text lamentable kingdom. There is no line in the output corresponding to the last ``null'' block of the input.

Sample Input

4 2
1 2 gt 0
2 2 lt 2
1 2
1 0 gt 0
1 0 lt 0
0

Sample Output

lamentable kingdom
successful conspiracy

Source

题目意思:
问你是否存在一个序列S{a1,a2,a3.....an}
可以满足下面两种不同数量的约束
假设s[x]表示a1+....+ax的和
约束1:x y gt w 比如1 2 gt w
从a1开始累加,再加2个的和大于w
根据题目意思即a1+a2+a3>w
变形一下即s[3]-s[0]>w
移动位置变形一下:s[0]-s[3]<-w
继续变形:s[0]-s[3]<=-w-1
即通式为:s[x-1]-s[x+y]<=-w-1
约束2:x y lt w 比如2 2 lt w
从a2开始累加,再加两个的和小于w
即a2+a3+a4<w
变形一下:s[4]-s[1]<w
继续变形:s[4]-s[1]<=w-1
通式:s[x+y]-s[x-1]<=w-1
都是形如x[i]-x[j]<=c的形式
从j指向i 权值为c这样建图
注意:建图完毕之后存在n+1个点,然后在加一个超级源点s,让s到这n+1个点的距离都为0
这样是为了保证图的连通性
然后判断一下图中是否存在负环,存在负环则表示某些约束不能满足
则不存在这样的序列
加了超级源点之后图中一共有n+2个点!!!
建议spfa判负环
 
code:
#include<stdio.h>
#include<iostream>
#include<math.h>
#include<string.h>
#include<set>
#include<map>
#include<list>
#include<math.h>
#include<queue>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 9999999999
#define me(a,x) memset(a,x,sizeof(a))
int mon1[]= {,,,,,,,,,,,,};
int mon2[]= {,,,,,,,,,,,,};
int dir[][]= {{,},{,-},{,},{-,}}; int getval()
{
int ret();
char c;
while((c=getchar())==' '||c=='\n'||c=='\r');
ret=c-'';
while((c=getchar())!=' '&&c!='\n'&&c!='\r')
ret=ret*+c-'';
return ret;
}
void out(int a)
{
if(a>)
out(a/);
putchar(a%+'');
} #define max_v 1005
struct node
{
int v;
LL w;
node(int vv=,LL ww=):v(vv),w(ww) {}
};
LL dis[max_v];
int vis[max_v];
int cnt[max_v];
vector<node> G[max_v];
queue<int> q; void init()
{
for(int i=; i<max_v; i++)
{
G[i].clear();
dis[i]=INF;
vis[i]=;
cnt[i]=;
}
while(!q.empty())
q.pop();
} int spfa(int s,int n)
{
vis[s]=;
dis[s]=;
q.push(s);
cnt[s]++; while(!q.empty())
{
int u=q.front();
q.pop();
vis[u]=; for(int j=; j<G[u].size(); j++)
{
int v=G[u][j].v;
LL w=G[u][j].w; if(dis[v]>dis[u]+w)
{
dis[v]=dis[u]+w;
if(vis[v]==)
{
q.push(v);
cnt[v]++;
vis[v]=; if(cnt[v]>n)
return ;
}
}
}
}
return ;
}
int f(int u,int v)
{
for(int j=; j<G[u].size(); j++)
{
if(G[u][j].v==v)
return ;
}
return ;
}
int main()
{
int n,m;
char str[];
int x,y,w;
while(~scanf("%d",&n))
{
if(n==)
break;
scanf("%d",&m);
init();
while(m--)
{
scanf("%d %d %s %d",&x,&y,str,&w);
if(strcmp(str,"gt")==)
{
int u=x+y;
int v=x-;
if(f(u,v))
G[u].push_back(node(v,-w-));
}else if(strcmp(str,"lt")==)
{
int u=x+y;
int v=x-;
if(f(v,u))
G[v].push_back(node(u,w-));
}
}
int s=n+;//超级源点 保证图的连通性
for(int i=;i<=n;i++)//超级源点到每个点的距离为0
{
if(f(s,i))
G[s].push_back(node(i,));
}
int flag=spfa(s,n+);
if(flag==)
printf("lamentable kingdom\n");
else
printf("successful conspiracy\n");
}
return ;
}
/*
题目意思:
问你是否存在一个序列S{a1,a2,a3.....an}
可以满足下面两种不同数量的约束 假设s[x]表示a1+....+ax的和 约束1:x y gt w 比如1 2 gt w
从a1开始累加,再加2个的和大于w
根据题目意思即a1+a2+a3>w
变形一下即s[3]-s[0]>w
移动位置变形一下:s[0]-s[3]<-w
继续变形:s[0]-s[3]<=-w-1
即通式为:s[x-1]-s[x+y]<=-w-1 约束2:x y lt w 比如2 2 lt w
从a2开始累加,再加两个的和小于w
即a2+a3+a4<w
变形一下:s[4]-s[1]<w
继续变形:s[4]-s[1]<=w-1
通式:s[x+y]-s[x-1]<=w-1 都是形如x[i]-x[j]<=c的形式
从j指向i 权值为c这样建图 注意:建图完毕之后存在n+1个点,然后在加一个超级源点s,让s到这n+1个点的距离都为0
这样是为了保证图的连通性
然后判断一下图中是否存在负环,存在负环则表示某些约束不能满足
则不存在这样的序列 加了超级源点之后图中一共有n+2个点!!! 建议spfa判负环
*/

poj 1364 King(线性差分约束+超级源点+spfa判负环)的更多相关文章

  1. POJ 1364 King (差分约束)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8660   Accepted: 3263 Description ...

  2. poj 1364 King(差分约束)

    题意(真坑):傻国王只会求和,以及比较大小.阴谋家们想推翻他,于是想坑他,上交了一串长度为n的序列a[1],a[2]...a[n],国王作出m条形如(a[si]+a[si+1]+...+a[si+ni ...

  3. POJ 3259 Wormholes(SPFA判负环)

    题目链接:http://poj.org/problem?id=3259 题目大意是给你n个点,m条双向边,w条负权单向边.问你是否有负环(虫洞). 这个就是spfa判负环的模版题,中间的cnt数组就是 ...

  4. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  5. poj 2049(二分+spfa判负环)

    poj 2049(二分+spfa判负环) 给你一堆字符串,若字符串x的后两个字符和y的前两个字符相连,那么x可向y连边.问字符串环的平均最小值是多少.1 ≤ n ≤ 100000,有多组数据. 首先根 ...

  6. POJ——1364King(差分约束SPFA判负环+前向星)

    King Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11946   Accepted: 4365 Description ...

  7. BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)

    BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...

  8. poj 3621 二分+spfa判负环

    http://poj.org/problem?id=3621 求一个环的{点权和}除以{边权和},使得那个环在所有环中{点权和}除以{边权和}最大. 0/1整数划分问题 令在一个环里,点权为v[i], ...

  9. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

随机推荐

  1. JavaScript判断值是否是NaN

    第一种方法: if (!Number.isNaN) { Number.isNaN = function (n) { return ( typeof n === 'number' && ...

  2. 前端js获取checkbox的值

    1. var old = $("#old").val(); if (old != null && old != 'undefined' && old ...

  3. Ajax 滚动异步加载数据

    第一种情况:单个div滚动 HTML <body> <!-- search start --> <div class="search" #if($m_ ...

  4. js的style.display小问题

    在元素添加class样式隐藏display:none; 使用console.log(xx.style.display);//空值

  5. 【VS2015】Win7 X64上面安装VS2015

    环境: 1.Win7 x64 SP1旗舰版 2.VS2015专业版Update3 3.IE11 4.WDK10 5.SDK10   安装步骤: 1.安装IE11,需要如下补丁:     a.Windo ...

  6. ArcGIS三种方式打断相交线------Planarize Lines工具

    1. 只有一个layer图层时,我们只需要选择”Planarize Lines“工具即可. (1)选择工具栏”Customize“选项: (2)选择Customize工具栏中的”Toolbars“选项 ...

  7. bootstrap和ajax相结合

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  8. RecyclerView-- 侧滑删除和拖动排序

    实现这么个功能我们不需要再去继承RecyclerView,只需要去了解ItemTouchHelper这个类即可,接下来我们就去看看都有些什么 ItemTouchHelper.Callback 默认需要 ...

  9. go语言练习:条件语句和循环语句

    1.for循环+if条件语句简单例子: package main import "fmt" func main() { var a int for a = 0; a <= 2 ...

  10. java io详解(1)

    一.java io结构图 二.java io的开始:文件 三.字节流: 一.java io结构图 流分类: 1.Java的字节流    InputStream是所有字节输入流的祖先,而OutputSt ...