Andrew Ng机器学习课程笔记(三)之正则化
Andrew Ng机器学习课程笔记(三)之正则化
版权声明:本文为博主原创文章,转载请指明转载地址
http://www.cnblogs.com/fydeblog/p/7365475.html
前言
学习了Andrew Ng课程,开始写了一些笔记,现在写完第5章了,先把这5章的内容放在博客中,后面的内容会陆续更新!
这篇博客主要记录Andrew Ng课程第三章正则化,主要介绍了线性回归和逻辑回归中,怎样去解决欠拟合和过拟合的问题
简要介绍:在进行线性回归或逻辑回归时,常常会出现以下三种情况
回归问题:

第一个模型是一个线性模型,欠拟合,不能很好地适应我们的训练中;第三个模型是一个四次方的模型,过于强调拟合原始数据,而丢失了算法的本质:预测新数据。我们可以看出, 若给出一个新的值使之预测,它将表现的很差,是过拟合,虽然能非常好地适应我们的训练集但在新输入变量进行预测时可能会效果不好;而中间的模型似乎最合适。
分类问题也一样:

问题来了,那么解决方案也出现了,那就是正则化。
1. 改造代价函数
上面出现的过拟合是因为那些高次项导致了它们的产生,所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了。
试想一下,将上面的代价函数改动如下,增加了关于和两项

这样做的话,我们在尝试最小化代价时也需要将这个表达式纳入考虑中,并最终导致选择较小一些的θ3和θ4,那样就从过拟合过渡到拟合状态。
经过正则化处理的模型与原模型的可能对比如下图所示:

2. 正则化线性回归
(1)基于梯度下降
正则化线性回归的代价函数为:

如果我们要使用梯度下降法令这个代价函数最小化,因为我们未对θ0进行正则化,所以梯度下降算法将分两种情形:

转换一下,可以写为

可见,正则化线性回归的梯度下降算法的变化在于,每次都在原有算法更新规则的基础上令θ值减少了一个额外的值。
(2) 正规方程

3. 正则化逻辑回归
相应的代价函数:

梯度下降算法:

虽然正则化的逻辑回归中的梯度下降和正则化的线性回归中的表达式看起来一样,但由于两者的h(x)不同所以还是有很大差别。
Andrew Ng机器学习课程笔记(三)之正则化的更多相关文章
- Andrew Ng机器学习课程笔记(四)之神经网络
Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...
- Andrew Ng机器学习课程笔记(五)之应用机器学习的建议
Andrew Ng机器学习课程笔记(五)之 应用机器学习的建议 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7368472.h ...
- Andrew Ng机器学习课程笔记--汇总
笔记总结,各章节主要内容已总结在标题之中 Andrew Ng机器学习课程笔记–week1(机器学习简介&线性回归模型) Andrew Ng机器学习课程笔记--week2(多元线性回归& ...
- Andrew Ng机器学习课程笔记(二)之逻辑回归
Andrew Ng机器学习课程笔记(二)之逻辑回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364636.html 前言 ...
- Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归)
title: Andrew Ng机器学习课程笔记--week1(机器学习介绍及线性回归) tags: 机器学习, 学习笔记 grammar_cjkRuby: true --- 之前看过一遍,但是总是模 ...
- Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.h ...
- Andrew Ng机器学习课程笔记(一)之线性回归
Andrew Ng机器学习课程笔记(一)之线性回归 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7364598.html 前言 ...
- Andrew Ng机器学习课程笔记--week3(逻辑回归&正则化参数)
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representatio ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 7 Regularization 正则化
Lecture7 Regularization 正则化 7.1 过拟合问题 The Problem of Overfitting7.2 代价函数 Cost Function7.3 正则化线性回归 R ...
随机推荐
- 你可能不知道的Shell
Shell也叫做命令行界面,它是*nix操作系统下用户和计算机的交互界面.Shell这个词是指操作系统中提供访问内核服务的程序. 这篇文章向大家介绍Shell一些非广为人知.但却实用有趣的知识,权当品 ...
- POJ3723--Conscription(MST)WRONG
Description Windy has a country, and he wants to build an army to protect his country. He has picked ...
- QOpenglWidget 与QGLWidget的选择
1. QGLWidget 是Qt OpenGL模块,但是从其官方说明,推荐在Qt5.4 之后,使用QOpenglWidget版本,具体说明如下: Note: This class is part of ...
- 二分搜素——(lower_bound and upper_bound)
因为每个人二分的风格不同,所以在学习二分的时候总是被他们的风格搞晕.有的人二分风格是左闭右开也就是[L,R),有的人是左开右闭的(L,R]. 二分的最基本条件是,二分的序列需要有单调性. 下面介绍的时 ...
- unidbgrid单元格操作
unidbgrid单元格操作 //GRID里回车替换TABfunction cellkeydown(sender, td, cellIndex, record, tr, rowIndex, e, eO ...
- Nginx 实现端口转发
https://www.cnblogs.com/zhaoyingjie/p/7248678.html Nginx 实现端口转发 什么是端口转发 当我们在服务器上搭建一个图书以及一个电影的应用,其中图书 ...
- Mac系统登录不进系统解决办法
1.找到买苹果电脑时附带的 Mac OS X 系统光盘,或者有苹果 Mac OS X 系统镜像的 U 盘/移动硬盘,塞入光驱(或插在 USB /火线接口上).重启苹果电脑,开机时按住“option”键 ...
- [C#]剖析异步编程语法糖: async和await
一.难以被接受的async 自从C#5.0,语法糖大家庭又加入了两位新成员: async和await. 然而从我知道这两个家伙之后的很长一段时间,我甚至都没搞明白应该怎么使用它们,这种全新的异步编程模 ...
- C# 用户选择单个压缩-系统自带压缩
//用C#自带的压缩,最少要.net4.5或以上,先增加引用 System.IO.Compression.FileSystem // FolderBrowserDialog dlg = new Fol ...
- Resolving SharePoint Application Authentication Error: Login Failed
Check event viewer log Click Start, click Run, type eventvwr, and then click OK. Click on Security u ...