在寻找densnet网络的时候,我发现了一个结构清晰完整的网络代码,在此作备份。

https://github.com/taki0112/Densenet-Tensorflow

Densenet-Tensorflow

Tensorflow implementation of Densenet using Cifar10, MNIST

  • The code that implements this paper is Densenet.py
  • There is a slight difference, I used AdamOptimizer

If you want to see the original author's code or other implementations, please refer to this link

Requirements

  • Tensorflow 1.x
  • Python 3.x
  • tflearn (If you are easy to use global average pooling, you should install tflearn
However, I implemented it using tf.layers, so don't worry

Issue

  • I used tf.contrib.layers.batch_norm
  def Batch_Normalization(x, training, scope):
with arg_scope([batch_norm],
scope=scope,
updates_collections=None,
decay=0.9,
center=True,
scale=True,
zero_debias_moving_mean=True) :
return tf.cond(training,
lambda : batch_norm(inputs=x, is_training=training, reuse=None),
lambda : batch_norm(inputs=x, is_training=training, reuse=True))
  • If not enough GPU memory, Please edit the code
with tf.Session() as sess : NO
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess : OK

Idea

What is the "Global Average Pooling" ?

    def Global_Average_Pooling(x, stride=1) :
width = np.shape(x)[1]
height = np.shape(x)[2]
pool_size = [width, height]
return tf.layers.average_pooling2d(inputs=x, pool_size=pool_size, strides=stride)
# The stride value does not matter
If you use tflearn, please refer to this link
def Global_Average_Pooling(x):
return tflearn.layers.conv.global_avg_pool(x, name='Global_avg_pooling')

What is the "Dense Connectivity" ?

What is the "Densenet Architecture" ?

    def Dense_net(self, input_x):
x = conv_layer(input_x, filter=2 * self.filters, kernel=[7,7], stride=2, layer_name='conv0')
x = Max_Pooling(x, pool_size=[3,3], stride=2) x = self.dense_block(input_x=x, nb_layers=6, layer_name='dense_1')
x = self.transition_layer(x, scope='trans_1') x = self.dense_block(input_x=x, nb_layers=12, layer_name='dense_2')
x = self.transition_layer(x, scope='trans_2') x = self.dense_block(input_x=x, nb_layers=48, layer_name='dense_3')
x = self.transition_layer(x, scope='trans_3') x = self.dense_block(input_x=x, nb_layers=32, layer_name='dense_final') x = Batch_Normalization(x, training=self.training, scope='linear_batch')
x = Relu(x)
x = Global_Average_Pooling(x)
x = Linear(x) return x

What is the "Dense Block" ?

   def dense_block(self, input_x, nb_layers, layer_name):
with tf.name_scope(layer_name):
layers_concat = list()
layers_concat.append(input_x) x = self.bottleneck_layer(input_x, scope=layer_name + '_bottleN_' + str(0)) layers_concat.append(x) for i in range(nb_layers - 1):
x = Concatenation(layers_concat)
x = self.bottleneck_layer(x, scope=layer_name + '_bottleN_' + str(i + 1))
layers_concat.append(x) return x

What is the "Bottleneck Layer" ?

 def bottleneck_layer(self, x, scope):
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=4 * self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training) x = Batch_Normalization(x, training=self.training, scope=scope+'_batch2')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[3,3], layer_name=scope+'_conv2')
x = Drop_out(x, rate=dropout_rate, training=self.training) return x

What is the "Transition Layer" ?

    def transition_layer(self, x, scope):
with tf.name_scope(scope):
x = Batch_Normalization(x, training=self.training, scope=scope+'_batch1')
x = Relu(x)
x = conv_layer(x, filter=self.filters, kernel=[1,1], layer_name=scope+'_conv1')
x = Drop_out(x, rate=dropout_rate, training=self.training)
x = Average_pooling(x, pool_size=[2,2], stride=2) return x

Compare Structure (CNN, ResNet, DenseNet)

Results

  • (MNIST) The highest test accuracy is 99.2% (This result does not use dropout)
  • The number of dense block layers is fixed to 4
    for i in range(self.nb_blocks) :
# original : 6 -> 12 -> 48 x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i))
x = self.transition_layer(x, scope='trans_'+str(i))

CIFAR-10

CIFAR-100

Image Net

Related works

References

Author

Junho Kim

Densenet-Tensorflow的更多相关文章

  1. densenet tensorflow 中文汉字手写识别

    densenet 中文汉字手写识别,代码如下: import tensorflow as tf import os import random import math import tensorflo ...

  2. tensorflow学习笔记——DenseNet

    完整代码及其数据,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/DeepLearningNote 这里结合网络的资料和De ...

  3. TensorFlow从1到2(五)图片内容识别和自然语言语义识别

    Keras内置的预定义模型 上一节我们讲过了完整的保存模型及其训练完成的参数. Keras中使用这种方式,预置了多个著名的成熟神经网络模型.当然,这实际是Keras的功劳,并不适合算在TensorFl ...

  4. 从零开始自己搭建复杂网络2(以Tensorflow为例)

    从零开始自己搭建复杂网络(以DenseNet为例) DenseNet 是一种具有密集连接的卷积神经网络.在该网络中,任何两层之间都有直接的连接,也就是说,网络每一层的输入都是前面所有层输出的并集, 而 ...

  5. Tensorflow 之finetune微调模型方法&&不同层上设置不同的学习率

    在不同层上设置不同的学习率,fine-tuning https://github.com/dgurkaynak/tensorflow-cnn-finetune ConvNets: AlexNet VG ...

  6. DenseNet算法详解——思路就是highway,DneseNet在训练时十分消耗内存

    论文笔记:Densely Connected Convolutional Networks(DenseNet模型详解) 2017年09月28日 11:58:49 阅读数:1814 [ 转载自http: ...

  7. W tensorflow/core/util/ctc/ctc_loss_calculator.cc:144] No valid path found 或 loss:inf的解决方案

    基于Tensorflow和Keras实现端到端的不定长中文字符检测和识别(文本检测:CTPN,文本识别:DenseNet + CTC),在使用自己的数据训练这个模型的过程中,出现如下错误,由于问题已经 ...

  8. tensorflow+inceptionv3图像分类网络结构的解析与代码实现

    tensorflow+inceptionv3图像分类网络结构的解析与代码实现 论文链接:论文地址 ResNet传送门:Resnet-cifar10 DenseNet传送门:DenseNet SegNe ...

  9. TensorFlow中的语义分割套件

    TensorFlow中的语义分割套件 描述 该存储库用作语义细分套件.目标是轻松实现,训练和测试新的语义细分模型!完成以下内容: 训练和测试方式 资料扩充 几种最先进的模型.轻松随插即用 能够使用任何 ...

  10. Tensorflow 官方版教程中文版

    2015年11月9日,Google发布人工智能系统TensorFlow并宣布开源,同日,极客学院组织在线TensorFlow中文文档翻译.一个月后,30章文档全部翻译校对完成,上线并提供电子书下载,该 ...

随机推荐

  1. PHP从入门到精通

    php基本语法 1.变量类型 a.标量类型 bool integer float string b.复合类型 array object c.特殊类型 resource null d.伪类型 mixd ...

  2. java学习之switch 等值判断

    当匹配到相等的值时候 则进入case里面执行语句 当该语句有break时候 则退出匹配 当没有break时候 则继续往下匹配 直到遇到break才停止匹配

  3. HDU 5112 A Curious Matt (2014ACM/ICPC亚洲区北京站-重现赛)

    A Curious Matt Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 512000/512000 K (Java/Others) ...

  4. 【题解】 bzoj4472: [Jsoi2015]salesman (动态规划)

    bzoj4472,懒得复制,戳我戳我 Solution: 题面意思:从\(1\)号节点出发,每到一个节点就必须停下,获得节点权值(每个节点只会获得一次),每个点有个规定的停留次数,求最大可获得多大权值 ...

  5. 洛谷 P2336 [SCOI2012]喵星球上的点名 解题报告

    P2336 [SCOI2012]喵星球上的点名 题目描述 a180285 幸运地被选做了地球到喵星球的留学生.他发现喵星人在上课前的点名现象非常有趣. 假设课堂上有 \(N\) 个喵星人,每个喵星人的 ...

  6. 【COGS2479】 HZOI2016—偏序

    http://cogs.pro/cogs/problem/problem.php?pid=2479 (题目链接) 题意 四维偏序. Solution CDQ套CDQ. 细节 第二次分治不能直接按照mi ...

  7. SpringBoot整合Mybatis之Annotation

    首先需要下载前面一篇文章的代码,在前一章代码上进行修改. SpringBoot整合Mybatis(注解方式) 复制前一个项目,修改配置文件,mybatis的相关配置为: mybatis: type-a ...

  8. Java实现的一个简单的模板渲染

    代码 package com.hdwang; import java.util.HashMap; import java.util.Map; /** * Created by hdwang on 20 ...

  9. 界面编程之QT的线程20180731

    /*******************************************************************************************/ 一.为什么需 ...

  10. Struts2_day03

    一.上节回顾 1 在action获取表单提交数据 (1)使用ActionContext类获取 (2)使用ServletActionContext类获取 (3)接口注入 2 结果配置 (1)全局结果页面 ...