Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std; typedef long long LL;
const int maxn = + ; //int prime[maxn + 1]; //第i个素数,保存区间内素数
bool is_prime[maxn]; //is_prime[i]为true表示i是素数
bool judge[maxn]; //能随机访问某数是否为素数 void sieve(int n) {
memset(judge, , sizeof(judge));
// int p = 0;
for (int i = ; i <= n; i++) is_prime[i] = true;
is_prime[] = is_prime[] = false;
for (int i = ; i <= n; i++) {
if (is_prime[i]) {
// prime[p++] = i;
judge[i] = true;
for (int j = *i; j <= n; j+=i) is_prime[j] = false;
}
}
} LL mod_pow(int x, int n, int mod)
{
LL res = ;
while (n > ) {
if (n & ) res = res * x % mod;
x = x * x % mod;
n >>= ;
}
return res;
} bool solve(int n)
{
for (int i = ; i < n; i++) {
if (mod_pow(i, n, n*) != i)
return false;
}
return true;
} int main()
{
int n;
sieve(maxn);
while (scanf("%d", &n) != EOF && n)
{
if (!judge[n] && solve(n)) printf("The number %d is a Carmichael number.\n", n);
else printf("%d is normal.\n", n);
}
return ;
}
Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表的更多相关文章
- Colossal Fibonacci Numbers! UVA - 11582(快速幂,求解)
Problem Description The i’th Fibonacci number f(i) is recursively defined in the following way: •f(0 ...
- POJ 1995(有关快速幂运算的一道水题)
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9745 Accepted: ...
- 《挑战程序设计竞赛》2.6 数学问题-快速幂运算 POJ1995
POJ3641 此题应归类为素数. POJ1995 http://poj.org/problem?id=1995 题意 求(A1^B1+A2^B2+ - +AH^BH)mod M. 思路 标准快速幂运 ...
- Raising Modulo Numbers(POJ 1995 快速幂)
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5934 Accepted: ...
- UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...
- 埃氏筛法(快速筛选n以内素数的个数)
给你一个数n,请问n以内有多少个素数?(n <= 10e7) 一般来说,要是对一个整数进行素数判断,首先想到的是写个函数判断是否为素数,然后调用这个函数,时间复杂度为O(n^(½)),但是要求n ...
- UVa 10870 & 矩阵快速幂
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...
- UVa 10870 (矩阵快速幂) Recurrences
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio ...
- Pseudoprime numbers(POJ 3641 快速幂)
#include <cstring> #include <cstdio> #include <iostream> #include <cmath> #i ...
随机推荐
- JQ_One()函数特效
先看一个例子,当点击 p 元素时,增加该元素的文本大小,代码如下:<script type="text/javascript" src="http://keleyi ...
- mongodb分片集群
第一章 1.mongodb 分片集群解释和目的 一组Mongodb复制集,就是一组mongod进程,这些进程维护同一个数据集合.复制集提供了数据冗余和高等级的可靠性,这是生产部署的基础. 第二章 1. ...
- kubernetes 网络故障遇见的坑
1.记录一下自己搭建kubernetes 集群遇见的坑. 过程是我学技术以来最大的bug,处处都是坑,稍微写成一点, 就完全起不来, 起不来之后, 还找不到故障点, 郁闷之极. 后续会慢慢分享给大家. ...
- centos6 和centos7 安装git 的区别
centos6 和centos7 安装git 的区别 centos6安装git yum install curl-devel expat-devel gettext-devel openssl-dev ...
- 【转】Cocos2d-x 3.x基础学习: 总结数学类Vec2/Size/Rect
转载:http://www.taikr.com/article/1847 在Cocos2d-x 3.x中,数学类Vec2.Size.Rect,是比较常用的类.比如设置图片位置,图片大小,两图片的碰撞检 ...
- unity上传app store遇到的一些问题
记录ios发布时遇到的一些问题 注:如果你是用mac开发,那就在Unity里直接BuildAndRun就直接可以导到XCode里,如果是win,那就先打包成ios包,在传导Xcode里打开,不过可能会 ...
- 用IDEA开发简单的Servlet
最近学习java,主要是servlet相关的内容.IDEA和servlet之前都没有碰过,所以做了一下小实验,走了一些弯路:这里把一个完整的步骤写出来,加深一下印象. IDEA创建项目步骤 1. 在i ...
- 祝贺自己操作系统JAVA项目有进展!!
先公布研发过程的心得吧!!! ^_^ /** * 作者:范铭祥 * 内容及功能: 显示框创造1.0 * 我将在这个类里 一:面板1:用来先显示一副图表示顺序和处理中 * 二:面板2:类1:用来显示要处 ...
- Docker(六)-Dcoker仓库
仓库 一个容易混淆的概念是注册服务器(Registry). 实际上注册服务器是管理仓库的具体服务器,每个服务器上可以有多个仓库,而每个仓库下面有多个镜像.从这方面来说, 仓库可以被认为是一个具体的项目 ...
- Entity Framework Plus
ZZZ Project 这家外国公司,有很多关于.NET和数据访问的项目,有收费的,有开源的,我之前介绍过 Z.ExtensionMethods 一个强大的开源扩展库 就出自该名下,其他有 如下 1. ...