Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std; typedef long long LL;
const int maxn = + ; //int prime[maxn + 1]; //第i个素数,保存区间内素数
bool is_prime[maxn]; //is_prime[i]为true表示i是素数
bool judge[maxn]; //能随机访问某数是否为素数 void sieve(int n) {
memset(judge, , sizeof(judge));
// int p = 0;
for (int i = ; i <= n; i++) is_prime[i] = true;
is_prime[] = is_prime[] = false;
for (int i = ; i <= n; i++) {
if (is_prime[i]) {
// prime[p++] = i;
judge[i] = true;
for (int j = *i; j <= n; j+=i) is_prime[j] = false;
}
}
} LL mod_pow(int x, int n, int mod)
{
LL res = ;
while (n > ) {
if (n & ) res = res * x % mod;
x = x * x % mod;
n >>= ;
}
return res;
} bool solve(int n)
{
for (int i = ; i < n; i++) {
if (mod_pow(i, n, n*) != i)
return false;
}
return true;
} int main()
{
int n;
sieve(maxn);
while (scanf("%d", &n) != EOF && n)
{
if (!judge[n] && solve(n)) printf("The number %d is a Carmichael number.\n", n);
else printf("%d is normal.\n", n);
}
return ;
}
Carmichael Numbers (Uva No.10006) -- 快速幂运算_埃氏筛法_打表的更多相关文章
- Colossal Fibonacci Numbers! UVA - 11582(快速幂,求解)
Problem Description The i’th Fibonacci number f(i) is recursively defined in the following way: •f(0 ...
- POJ 1995(有关快速幂运算的一道水题)
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9745 Accepted: ...
- 《挑战程序设计竞赛》2.6 数学问题-快速幂运算 POJ1995
POJ3641 此题应归类为素数. POJ1995 http://poj.org/problem?id=1995 题意 求(A1^B1+A2^B2+ - +AH^BH)mod M. 思路 标准快速幂运 ...
- Raising Modulo Numbers(POJ 1995 快速幂)
Raising Modulo Numbers Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5934 Accepted: ...
- UVA - 11149 (矩阵快速幂+倍增法)
第一道矩阵快速幂的题:模板题: #include<stack> #include<queue> #include<cmath> #include<cstdio ...
- 埃氏筛法(快速筛选n以内素数的个数)
给你一个数n,请问n以内有多少个素数?(n <= 10e7) 一般来说,要是对一个整数进行素数判断,首先想到的是写个函数判断是否为素数,然后调用这个函数,时间复杂度为O(n^(½)),但是要求n ...
- UVa 10870 & 矩阵快速幂
题意: 求一个递推式(不好怎么概括..)的函数的值. 即 f(n)=a1f(n-1)+a2f(n-2)+...+adf(n-d); SOL: 根据矩阵乘法的定义我们可以很容易地构造出矩阵,每次乘法即可 ...
- UVa 10870 (矩阵快速幂) Recurrences
给出一个d阶线性递推关系,求f(n) mod m的值. , 求出An-dv0,该向量的最后一个元素就是所求. #include <iostream> #include <cstdio ...
- Pseudoprime numbers(POJ 3641 快速幂)
#include <cstring> #include <cstdio> #include <iostream> #include <cmath> #i ...
随机推荐
- shell脚本之基础
配置启动界面 vim /etc/inittab/ init3配置网卡 重启生效system-config-network网卡配置文件vim /etc/sysconfig/network-script ...
- 将WebService部署到 SharePoint 2010 gac 缓存中,并用Log4Net记录日志到数据库
最近做了一个sharePoint项目,需要实现的功能是,第三方网站访问我们sharePoint中的数据,通过Webservice方式实现文件的上传和下载. 于是代码工作完成了之后,本地调试没什么问题, ...
- Java+Netty、Vue+Element-UI实现的即时通信应用 leo-im
之前工作接触了几个开源的IM产品,再加上曾经用Netty实现过几个服务,于是就有了用Netty实现一个IM的想法,于是用业余时间写了一个IM,和喜欢Netty的程序员们分享. 考虑到方便扩展,在服务端 ...
- kudu 存储引擎简析
本文由 网易云发布. 1 概述 本文主要介绍kudu底层存储引擎的数据组织方式,先看整体结构如下: 一张表会分成若干个tablet , 每个tablet 包括MetaData 元信息及若干个RowS ...
- 升级framework4.0后form认证票据失效的问题
好久没来了,密码都差点忘了,顺便记录下今天配置环境碰到的小问题 网站使用的form authentication做SSO登录,登录域名使用的framework20配置环境 一个栏目升级为4.0环境后, ...
- PAT甲题题解-1060. Are They Equal (25)-字符串处理(科学计数法)
又是一道字符串处理的题目... 题意:给出两个浮点数,询问它们保留n位小数的科学计数法(0.xxx*10^x)是否相等.根据是和否输出相应答案. 思路:先分别将两个浮点数转换成相应的科学计数法的格式1 ...
- Python爬虫爬中文却显示Unicode,怎样显示中文--问题解答
首先爬取古诗网站时,显示 原因是因为输出为列表[] 如果写一个循环,输出其中每个元素就为中文了...
- HDU 2020 绝对值排序
http://acm.hdu.edu.cn/showproblem.php?pid=2020 Problem Description 输入n(n<=100)个整数,按照绝对值从大到小排序后输出. ...
- Windows XP 安装使用的序列号
SP3 X86 MRX3F-47B9T-2487J-KWKMF-RPWBY SP2 X64 B66VY-4D94T-TPPD4-43F72-8X4FY 注意 X64 没有SP3的包 用的是跟 2003 ...
- 从0到1搭建基于Kafka、Flume和Hive的海量数据分析系统(一)数据收集应用
大数据时代,一大技术特征是对海量数据采集.存储和分析的多组件解决方案.而其中对来自于传感器.APP的SDK和各类互联网应用的原生日志数据的采集存储则是基本中的基本.本系列文章将从0到1,概述一下搭建基 ...