原文链接:https://juejin.im/post/59c3f8f75188255be81f91d9#heading-17

Apache Hive-2.3.0 快速搭建与使用

Hive 简介

Hive 是一个基于 hadoop 的开源数据仓库工具,用于存储和处理海量结构化数据。它把海量数据存储于 hadoop 文件系统,而不是数据库,但提供了一套类数据库的数据存储和处理机制,并采用 HQL (类 SQL )语言对这些数据进行自动化管理和处理。我们可以把 Hive 中海量结构化数据看成一个个的表,而实际上这些数据是分布式存储在 HDFS 中的。 Hive 经过对语句进行解析和转换,最终生成一系列基于 hadoop 的 map/reduce 任务,通过执行这些任务完成数据处理。

Hive 诞生于 facebook 的日志分析需求,面对海量的结构化数据, Hive 以较低的成本完成了以往需要大规模数据库才能完成的任务,并且学习门槛相对较低,应用开发灵活而高效。

Hive 自 2009.4.29 发布第一个官方稳定版 0.3.0 至今,不过一年的时间,正在慢慢完善,网上能找到的相关资料相当少,尤其中文资料更少,本文结合业务对 Hive 的应用做了一些探索,并把这些经验做一个总结,所谓前车之鉴,希望读者能少走一些弯路。

准备工作

环境

JDK:1.8
Hadoop Release:2.7.4
centos:7.3 node1(master) 主机: 192.168.252.121
node2(slave1) 从机: 192.168.252.122
node3(slave2) 从机: 192.168.252.123 node4(mysql) 从机: 192.168.252.124
复制代码

依赖环境

安装**Apache Hive**前提是要先安装hadoop集群,并且hive只需要在hadoop的namenode节点集群里安装即可(需要在有的namenode上安装),可以不在datanode节点的机器上安装。还需要说明的是,虽然修改配置文件并不需要把hadoop运行起来,但是本文中用到了hadoop的hdfs命令,在执行这些命令时你必须确保hadoop是正在运行着的,而且启动hive的前提也需要hadoop在正常运行着,所以建议先把hadoop集群启动起来。

安装**MySQL** 用于存储 Hive 的元数据(也可以用 Hive 自带的嵌入式数据库 Derby,但是 Hive 的生产环境一般不用 Derby),这里只需要安装 MySQL 单机版即可,如果想保证高可用的化,也可以部署 MySQL 主从模式;

Hadoop

Hadoop-2.7.4 集群快速搭建

MySQL 随意任选其一

CentOs7.3 安装 MySQL 5.7.19 二进制版本

搭建 MySQL 5.7.19 主从复制,以及复制实现细节分析

安装

下载解压

su hadoop
cd /home/hadoop/
wget https://mirrors.tuna.tsinghua.edu.cn/apache/hive/hive-2.3.0/apache-hive-2.3.0-bin.tar.gz
tar -zxvf apache-hive-2.3.0-bin.tar.gz
mv apache-hive-2.3.0-bin hive-2.3.0
复制代码

环境变量

如果是对所有的用户都生效就修改vi /etc/profile 文件 如果只针对当前用户生效就修改 vi ~/.bahsrc 文件

sudo vi /etc/profile
复制代码
#hive
export PATH=${HIVE_HOME}/bin:$PATH
export HIVE_HOME=/home/hadoop/hive-2.3.0/
复制代码

使环境变量生效,运行 source /etc/profile使/etc/profile文件生效

Hive 配置 Hadoop HDFS

复制 hive-site.xml

cd /home/hadoop/hive-2.3.0/conf
cp hive-default.xml.template hive-site.xml
复制代码

新建 hdfs 目录

使用 hadoop 新建 hdfs 目录,因为在 hive-site.xml 中有默认如下配置:

<property>
<name>hive.metastore.warehouse.dir</name>
<value>/user/hive/warehouse</value>
<description>location of default database for the warehouse</description>
</property>
<property>
复制代码

进入 hadoop 安装目录 执行hadoop命令新建/user/hive/warehouse目录,并授权,用于存储文件

cd /home/hadoop/hadoop-2.7.4

bin/hadoop fs -mkdir -p /user/hive/warehouse
bin/hadoop fs -mkdir -p /user/hive/tmp
bin/hadoop fs -mkdir -p /user/hive/log
bin/hadoop fs -chmod -R 777 /user/hive/warehouse
bin/hadoop fs -chmod -R 777 /user/hive/tmp
bin/hadoop fs -chmod -R 777 /user/hive/log
复制代码

用以下命令检查目录是否创建成功

bin/hadoop fs -ls /user/hive
复制代码

修改 hive-site.xml

搜索hive.exec.scratchdir,将该name对应的value修改为/user/hive/tmp

<property>
<name>hive.exec.scratchdir</name>
<value>/user/hive/tmp</value>
</property>
复制代码

搜索hive.querylog.location,将该name对应的value修改为/user/hive/log/hadoop

<property>
<name>hive.querylog.location</name>
<value>/user/hive/log/hadoop</value>
<description>Location of Hive run time structured log file</description>
</property>
复制代码

搜索javax.jdo.option.connectionURL,将该name对应的value修改为MySQL的地址

<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://192.168.252.124:3306/hive?createDatabaseIfNotExist=true</value>
<description>
JDBC connect string for a JDBC metastore.
To use SSL to encrypt/authenticate the connection, provide database-specific SSL flag in the connection URL.
For example, jdbc:postgresql://myhost/db?ssl=true for postgres database.
</description>
</property>
复制代码

搜索javax.jdo.option.ConnectionDriverName,将该name对应的value修改为MySQL驱动类路径

<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>Driver class name for a JDBC metastore</description>
</property>
复制代码

搜索javax.jdo.option.ConnectionUserName,将对应的value修改为MySQL数据库登录名

<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>root</value>
<description>Username to use against metastore database</description>
</property>
复制代码

搜索javax.jdo.option.ConnectionPassword,将对应的value修改为MySQL数据库的登录密码

<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>mima</value>
<description>password to use against metastore database</description>
</property>
复制代码

创建 tmp 文件

mkdir /home/hadoop/hive-2.3.0/tmp
复制代码

并在 hive-site.xml 中修改

{system:java.io.tmpdir} 改成 /home/hadoop/hive-2.3.0/tmp

把 {system:user.name} 改成 {user.name}

新建 hive-env.sh

cp hive-env.sh.template hive-env.sh

vi hive-env.sh

HADOOP_HOME=/home/hadoop/hadoop-2.7.4/
export HIVE_CONF_DIR=/home/hadoop/hive-2.3.0/conf
export HIVE_AUX_JARS_PATH=/home/hadoop/hive-2.3.0/lib
复制代码

下载 mysql 驱动包

cd /home/hadoop/hive-2.3.0/lib

wget http://central.maven.org/maven2/mysql/mysql-connector-java/5.1.38/mysql-connector-java-5.1.38.jar
复制代码

初始化 mysql

MySQL数据库进行初始化

首先确保 mysql 中已经创建 hive 库

cd /home/hadoop/hive-2.3.0/bin
./schematool -initSchema -dbType mysql
复制代码

如果看到如下,表示初始化成功

Starting metastore schema initialization to 2.3.0
Initialization script hive-schema-2.3.0.mysql.sql
Initialization script completed
schemaTool completed
复制代码

查看 mysql 数据库

/usr/local/mysql/bin/mysql -uroot -p
复制代码
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| hive |
| mysql |
| performance_schema |
| sys |
+--------------------+
5 rows in set (0.00 sec)
复制代码
mysql> use hive;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A Database changed
mysql> show tables;
+---------------------------+
| Tables_in_hive |
+---------------------------+
| AUX_TABLE |
| BUCKETING_COLS |
| CDS |
| COLUMNS_V2 |
| COMPACTION_QUEUE |
| COMPLETED_COMPACTIONS |
| COMPLETED_TXN_COMPONENTS |
| DATABASE_PARAMS |
| DBS |
| DB_PRIVS |
| DELEGATION_TOKENS |
| FUNCS |
| FUNC_RU |
| GLOBAL_PRIVS |
| HIVE_LOCKS |
| IDXS |
| INDEX_PARAMS |
| KEY_CONSTRAINTS |
| MASTER_KEYS |
| NEXT_COMPACTION_QUEUE_ID |
| NEXT_LOCK_ID |
| NEXT_TXN_ID |
| NOTIFICATION_LOG |
| NOTIFICATION_SEQUENCE |
| NUCLEUS_TABLES |
| PARTITIONS |
| PARTITION_EVENTS |
| PARTITION_KEYS |
| PARTITION_KEY_VALS |
| PARTITION_PARAMS |
| PART_COL_PRIVS |
| PART_COL_STATS |
| PART_PRIVS |
| ROLES |
| ROLE_MAP |
| SDS |
| SD_PARAMS |
| SEQUENCE_TABLE |
| SERDES |
| SERDE_PARAMS |
| SKEWED_COL_NAMES |
| SKEWED_COL_VALUE_LOC_MAP |
| SKEWED_STRING_LIST |
| SKEWED_STRING_LIST_VALUES |
| SKEWED_VALUES |
| SORT_COLS |
| TABLE_PARAMS |
| TAB_COL_STATS |
| TBLS |
| TBL_COL_PRIVS |
| TBL_PRIVS |
| TXNS |
| TXN_COMPONENTS |
| TYPES |
| TYPE_FIELDS |
| VERSION |
| WRITE_SET |
+---------------------------+
57 rows in set (0.00 sec)
复制代码

启动 Hive

简单测试

启动Hive

cd /home/hadoop/hive-2.3.0/bin

./hive
复制代码

创建 hive 库

hive>  create database ymq;
OK
Time taken: 0.742 seconds
复制代码

选择库

hive> use ymq;
OK
Time taken: 0.036 seconds
复制代码

创建表

hive> create table test (mykey string,myval string);
OK
Time taken: 0.569 seconds
复制代码

插入数据

hive> insert into test values("1","www.ymq.io");

WARNING: Hive-on-MR is deprecated in Hive 2 and may not be available in the future versions. Consider using a different execution engine (i.e. spark, tez) or using Hive 1.X releases.
Query ID = hadoop_20170922011126_abadfa44-8ebe-4ffc-9615-4241707b3c03
Total jobs = 3
Launching Job 1 out of 3
Number of reduce tasks is set to 0 since there's no reduce operator
Starting Job = job_1506006892375_0001, Tracking URL = http://node1:8088/proxy/application_1506006892375_0001/
Kill Command = /home/hadoop/hadoop-2.7.4//bin/hadoop job -kill job_1506006892375_0001
Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 0
2017-09-22 01:12:12,763 Stage-1 map = 0%, reduce = 0%
2017-09-22 01:12:20,751 Stage-1 map = 100%, reduce = 0%, Cumulative CPU 1.24 sec
MapReduce Total cumulative CPU time: 1 seconds 240 msec
Ended Job = job_1506006892375_0001
Stage-4 is selected by condition resolver.
Stage-3 is filtered out by condition resolver.
Stage-5 is filtered out by condition resolver.
Moving data to directory hdfs://node1:9000/user/hive/warehouse/ymq.db/test/.hive-staging_hive_2017-09-22_01-11-26_242_8022847052615616955-1/-ext-10000
Loading data to table ymq.test
MapReduce Jobs Launched:
Stage-Stage-1: Map: 1 Cumulative CPU: 1.24 sec HDFS Read: 4056 HDFS Write: 77 SUCCESS
Total MapReduce CPU Time Spent: 1 seconds 240 msec
OK
Time taken: 56.642 seconds
复制代码

查询数据

hive> select * from test;
OK
1 www.ymq.io
Time taken: 0.253 seconds, Fetched: 1 row(s)
复制代码

页面数据

在界面上查看刚刚写入的hdfs数据

hive mysql 初始化的更多相关文章

  1. 安装hive+mysql

    1.源码安装mysql 以root用户首先安装libaio-0.3.104.tar.gz tar zxvf libaio-0.3.104.tar.gz cd libaio-0.3.104 make p ...

  2. mysql 初始化修改密码问题(Mac系统)

    今天公司大牛帮我搞定了mysql初始化密码问题,纪录一下: ~ ps aux | grep mysqlMetro 7149 0.0 0.0 2432772 564 s000 R+ 7:16下午 0:0 ...

  3. MySQL初始化以及客户端工具的使用

    MySQL初始化以及客户端工具的使用 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.什么是关系型数据库 关系型数据库通常是把所有的数据都组织成二维关系.之所以称为关系型数据库是 ...

  4. 【数据库】5.0 MySQL入门学习(五)——MySQL源码了解及MySQL初始化设置

    1.0 MySQL源码目录主要包括:客户端代码.服务端代码.测试工具.其他库文件.当然,看懂源代码得有一定的C语言基础. BUILD:各种平台的编译脚本,可以用来制作各平台的二进制版本 client: ...

  5. mysql初始化

    注意:--install前,必须用mysql启动命令的绝对路径 # 制作MySQL的Windows服务,在终端执行此命令: mysqld --install # 移除MySQL的Windows服务,在 ...

  6. mysql初始化命令及其他命令

    这个问题纠结了我两年: 为了配置my.cnf中 undo的 参数生效,以及生成undo文件,使用一下命令 /usr/bin/mysql_install_db   --defaults-file=/et ...

  7. MySQL初始化root密码以及root密码忘记解决方法

    一.MySQL初始化root密码 mysql默认root用户没有密码,输入mysql –u root 进入mysql 1.进入mysql数据库 use mysql; 2.初始化root密码 mysql ...

  8. Navicat Premium连接MySQL 1251错误和Mysql初始化root密码和允许远程访问

    Mysql初始化root密码和允许远程访问 在我们使用mysql数据库时,有时我们的程序与数据库不在同一机器上,这时我们需要远程访问数据库.缺省状态下,mysql的用户是没有远程访问的权限. 下面介绍 ...

  9. MySQL——MySQL初始化配置文件

    初始化配置文件(影响服务器和客户端程序) 1.MySQL初始化配置加载顺序: 命令行 ----> 初始化配置文件 ----> 预编译选项 2.MySQL初始化配置文件加载顺序: (1)/e ...

随机推荐

  1. [Unity工具]查找GameObject在场景中所有被引用的地方

    参考链接: https://blog.csdn.net/hjzyzr/article/details/53316919?utm_source=blogxgwz4 https://blog.csdn.n ...

  2. Mysql5.7 Linux安装教程

    1系统约定安装文件下载目录:/data/softwareMysql目录安装位置:/usr/local/mysql数据库保存位置:/data/mysql日志保存位置:/data/log/mysql 2下 ...

  3. SLD Related Gateway Serivces Unavaliable

    SAP NW 7.4 default switched on the ACL (access control list) in gateway service, so only local acces ...

  4. 28.Mongodb问题解决

    mongodb问题配置解决: 之前官网下载msi文件安装总是出现问题,这次使用zip压缩包直接解压使用(较为省力). 链接:https://pan.baidu.com/s/1G-jh7CXD1gCz8 ...

  5. EditText被键盘遮得住

    如果在Activity中的布局的下方有EditText,获取焦点弹出软键盘的时候,如果不做处理,软键盘可能会遮挡输入框,用户提现不好,网上也有很多人提出结局方案,这里就分析一下解决的效果. 需要用到E ...

  6. zabbix监控java日志文件

    zabbix监控日志文件 https://blog.csdn.net/workdsz/article/details/78439230?utm_source=blogxgwz2

  7. 远程桌面连接MySQL遇到的问题及解决方法总结

    背景提要:想用Delphi做一个可以连接Mysql数据库的桌面应用程序.其中遇到了一些让自己很苦恼的问题.因为自己是新手,Delphi用的不熟,FireDAC这个连接数据库里控件更是没有接触过,对安装 ...

  8. Centos6与Centos7防火墙设置与端口开放的方法

    Centos升级到7之后,内置的防火墙已经从iptables变成了firewalld.所以,端口的开启还是要从两种情况来说明的,即iptables和firewalld.更多关于CentOs防火墙的最新 ...

  9. Dictionary转为Model实例

    Dictionary<string, object> dic = new Dictionary<string, object>(); dic.Add(); dic.Add(&q ...

  10. Django 数据库的迁移

    先数据库迁移的两大命令: python manage.py makemigrations & python manage.py migrate 前者是将model层转为迁移文件migratio ...