BZOJ原题链接

洛谷原题链接

很容易想到二维前缀和。

设\(S[i][j]\)表示矩阵\((0, 0)(i, j)\)内树木的棵数,则询问的矩形为\((x, y)(xx, yy)\)时,答案为\(S[xx][yy] - S[x - 1][yy] - S[xx][y - 1] + S[x - 1][y - 1]\)。

但这题坐标极大,显然不能直接求。

对\(x,y\)都进行离散化,然后我们考虑求询问。

将询问的矩阵拆成二维前缀和计算形式的四个矩阵,这样就可以用扫描线快速求矩阵,并统计答案即可。

这里我是用树状数组来维护的。

因为偷懒就用了\(vector\)

#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
const int N = 5e5 + 10;
struct dd {
int x, y, xx, yy;
};
dd a[N];
int tr_x[N], tr_y[N], ls_x[N << 2], ls_y[N << 2], C[N], an[N], nl, ml, xl, yl;
vector<int>X[N], q_1[N], q_2[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline int lowbit(int x) { return x & -x; }
inline void add(int x)
{
for (; x <= ml; x += lowbit(x))
C[x]++;
}
inline int ask(int x)
{
int s = 0;
for (; x; x -= lowbit(x))
s += C[x];
return s;
}
inline int BSX(int x)
{
int l = 1, r = nl, mid;
while (l <= r)
{
mid = (l + r) >> 1;
if (!(ls_x[mid] ^ x))
return mid;
ls_x[mid] > x ? r = mid - 1 : l = mid + 1;
}
return 0;
}
inline int BSY(int x)
{
int l = 1, r = ml, mid;
while (l <= r)
{
mid = (l + r) >> 1;
if (!(ls_y[mid] ^ x))
return mid;
ls_y[mid] > x ? r = mid - 1 : l = mid + 1;
}
return 0;
}
int main()
{
int i, j, n, m, L;
n = re();
m = re();
for (i = 1; i <= n; i++)
{
tr_x[i] = re() + 1;
tr_y[i] = re() + 1;
ls_x[++xl] = tr_x[i];
ls_y[++yl] = tr_y[i];
}
for (i = 1; i <= m; i++)
{
a[i].x = re();
a[i].y = re();
a[i].xx = re() + 1;
a[i].yy = re() + 1;
ls_x[++xl] = a[i].x;
ls_x[++xl] = a[i].xx;
ls_y[++yl] = a[i].y;
ls_y[++yl] = a[i].yy;
}
sort(ls_x + 1, ls_x + xl + 1);
sort(ls_y + 1, ls_y + yl + 1);
ls_x[xl + 1] = ls_y[yl + 1] = -1;
for (i = 1; i <= xl; i++)
if (ls_x[i] ^ ls_x[i + 1])
ls_x[++nl] = ls_x[i];
for (i = 1; i <= yl; i++)
if (ls_y[i] ^ ls_y[i + 1])
ls_y[++ml] = ls_y[i];
for (i = 1; i <= n; i++)
X[BSX(tr_x[i])].push_back(BSY(tr_y[i]));
for (i = 1; i <= m; i++)
{
a[i].y = BSY(a[i].y);
a[i].yy = BSY(a[i].yy);
q_1[BSX(a[i].x)].push_back(i);
q_2[BSX(a[i].xx)].push_back(i);
}
for (i = 1; i <= nl; i++)
{
for (j = 0, L = X[i].size(); j < L; j++)
add(X[i][j]);
for (j = 0, L = q_1[i].size(); j < L; j++)
an[q_1[i][j]] += ask(a[q_1[i][j]].y) - ask(a[q_1[i][j]].yy);
for (j = 0, L = q_2[i].size(); j < L; j++)
an[q_2[i][j]] += ask(a[q_2[i][j]].yy) - ask(a[q_2[i][j]].y);
}
for (i = 1; i <= m; i++)
printf("%d\n", an[i]);
return 0;
}

BZOJ1935或洛谷2163 [SHOI2007]园丁的烦恼的更多相关文章

  1. 洛谷 P2163 [SHOI2007]园丁的烦恼 (离线sort,树状数组,解决三维偏序问题)

    P2163 [SHOI2007]园丁的烦恼 题目描述 很久很久以前,在遥远的大陆上有一个美丽的国家.统治着这个美丽国家的国王是一个园艺爱好者,在他的皇家花园里种植着各种奇花异草. 有一天国王漫步在花园 ...

  2. bzoj1935 [Shoi2007]园丁的烦恼

    bzoj1935 [Shoi2007]园丁的烦恼 有N个点坐标为(xi,yi),M次询问,询问(a,b)-(c,d)的矩形内有多少点. 0≤n≤500000,1≤m≤500000,0≤xi,yi≤10 ...

  3. P2163 [SHOI2007]园丁的烦恼

    题目 P2163 [SHOI2007]园丁的烦恼 做法 关于拆点,要真想拆直接全部用树状数组水过不就好了 做这题我们练一下\(cdq\)分治 左下角\((x1,y1)\)右上角\((x2,y2)\), ...

  4. [LuoguP2163][SHOI2007]园丁的烦恼_CDQ分治

    园丁的烦恼 题目链接:https://www.luogu.org/problem/P2163 数据范围:略. 题解: 树套树过不去,那就$CDQ$分治好了. 有点小细节,但都是$CDQ$分治必要的. ...

  5. 洛谷 P2057 [SHOI2007]善意的投票 解题报告

    P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  6. [洛谷P2057][SHOI2007]善意的投票

    题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...

  7. [洛谷P1434] [SHOI2007]滑雪

    题目链接: here we go 题外话: 谁能想到这是一道咕了两年的\(AC\)呢--当年是在搜索还半懂不懂的时候遇到的这道题,感觉真是难得要命()所以一直拖着不做,后面就下意识地逃避了搜索相关的内 ...

  8. 洛谷P2057 [SHOI2007]善意的投票 题解

    题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...

  9. 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流

    正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...

随机推荐

  1. C 中的typedef应用

    1. typedef  声明的新的类型名在变量名的位置出现. example: typedef unsigned int UINT 则 unsigned int a; 相当于 UINT A; 2. t ...

  2. 2018面向对象程序设计(Java)第8周学习指导及要求

    2018面向对象程序设计(Java)第8周学习指导及要求 (2018.10.18-2018.10.21)   学习目标 掌握接口定义方法: 掌握实现接口类的定义要求: 掌握实现了接口类的使用要求: 理 ...

  3. create-react-app之Invalid Host Header

    [create-react-app之Invalid Host Header] 1.When you enable the `proxy` option, you opt into a more str ...

  4. SpringMVC点滴(1)

    在使用springMVC很久,却一直没有总结其中的一些便捷配置和功能,恰好有空,加以总结 Servlet 3之后,在web.xml中加入async的支持,从而实现异步请求,需要在servlet和fil ...

  5. 四层协议给站点设置独享ip

    四层协议给站点设置独享ip 初始化为四层节点 设置独占ip 设置独享的产品不用预设置分组 增加站点 创建站点后,在分组解析里会自动创建一个以站点名为名称的分组并且会自动分配一个独享的ip在这个分组里( ...

  6. JMeter学习(二)录制脚本(转载)

    转载自 http://www.cnblogs.com/yangxia-test 环境 Badboy  version 2.1.1 JDK: 1.7.0_67 Apache  JMeter-2.11 - ...

  7. 【C++】operator new/new operator/placement new之间的区别

    new operator new operator即是c++中的关键字new.比如A* = new A; 中的new就是new operator. 它执行了三个步骤: 1. 分配内存空间 事实上,分配 ...

  8. jquery 动态数字滚动

    1.引入jQuery <script src="js/jquery.min.js"></script>2.html <div id="cou ...

  9. GIT 命令集

    Git图形化界面 下面是我整理的常用 Git 命令清单.几个专用名词的译名如下. Workspace:工作区 Index / Stage:暂存区 Repository:仓库区(或本地仓库) Remot ...

  10. as3.0橡皮擦功能

    //主容器 var main:Sprite = new Sprite(); main.mouseEnabled = false; addChild(main) //临时容器(所有操作都将先画在临时容器 ...