BZOJ原题链接

洛谷原题链接

很容易想到二维前缀和。

设\(S[i][j]\)表示矩阵\((0, 0)(i, j)\)内树木的棵数,则询问的矩形为\((x, y)(xx, yy)\)时,答案为\(S[xx][yy] - S[x - 1][yy] - S[xx][y - 1] + S[x - 1][y - 1]\)。

但这题坐标极大,显然不能直接求。

对\(x,y\)都进行离散化,然后我们考虑求询问。

将询问的矩阵拆成二维前缀和计算形式的四个矩阵,这样就可以用扫描线快速求矩阵,并统计答案即可。

这里我是用树状数组来维护的。

因为偷懒就用了\(vector\)

#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
const int N = 5e5 + 10;
struct dd {
int x, y, xx, yy;
};
dd a[N];
int tr_x[N], tr_y[N], ls_x[N << 2], ls_y[N << 2], C[N], an[N], nl, ml, xl, yl;
vector<int>X[N], q_1[N], q_2[N];
inline int re()
{
int x = 0;
char c = getchar();
bool p = 0;
for (; c < '0' || c > '9'; c = getchar())
p |= c == '-';
for (; c >= '0' && c <= '9'; c = getchar())
x = x * 10 + c - '0';
return p ? -x : x;
}
inline int lowbit(int x) { return x & -x; }
inline void add(int x)
{
for (; x <= ml; x += lowbit(x))
C[x]++;
}
inline int ask(int x)
{
int s = 0;
for (; x; x -= lowbit(x))
s += C[x];
return s;
}
inline int BSX(int x)
{
int l = 1, r = nl, mid;
while (l <= r)
{
mid = (l + r) >> 1;
if (!(ls_x[mid] ^ x))
return mid;
ls_x[mid] > x ? r = mid - 1 : l = mid + 1;
}
return 0;
}
inline int BSY(int x)
{
int l = 1, r = ml, mid;
while (l <= r)
{
mid = (l + r) >> 1;
if (!(ls_y[mid] ^ x))
return mid;
ls_y[mid] > x ? r = mid - 1 : l = mid + 1;
}
return 0;
}
int main()
{
int i, j, n, m, L;
n = re();
m = re();
for (i = 1; i <= n; i++)
{
tr_x[i] = re() + 1;
tr_y[i] = re() + 1;
ls_x[++xl] = tr_x[i];
ls_y[++yl] = tr_y[i];
}
for (i = 1; i <= m; i++)
{
a[i].x = re();
a[i].y = re();
a[i].xx = re() + 1;
a[i].yy = re() + 1;
ls_x[++xl] = a[i].x;
ls_x[++xl] = a[i].xx;
ls_y[++yl] = a[i].y;
ls_y[++yl] = a[i].yy;
}
sort(ls_x + 1, ls_x + xl + 1);
sort(ls_y + 1, ls_y + yl + 1);
ls_x[xl + 1] = ls_y[yl + 1] = -1;
for (i = 1; i <= xl; i++)
if (ls_x[i] ^ ls_x[i + 1])
ls_x[++nl] = ls_x[i];
for (i = 1; i <= yl; i++)
if (ls_y[i] ^ ls_y[i + 1])
ls_y[++ml] = ls_y[i];
for (i = 1; i <= n; i++)
X[BSX(tr_x[i])].push_back(BSY(tr_y[i]));
for (i = 1; i <= m; i++)
{
a[i].y = BSY(a[i].y);
a[i].yy = BSY(a[i].yy);
q_1[BSX(a[i].x)].push_back(i);
q_2[BSX(a[i].xx)].push_back(i);
}
for (i = 1; i <= nl; i++)
{
for (j = 0, L = X[i].size(); j < L; j++)
add(X[i][j]);
for (j = 0, L = q_1[i].size(); j < L; j++)
an[q_1[i][j]] += ask(a[q_1[i][j]].y) - ask(a[q_1[i][j]].yy);
for (j = 0, L = q_2[i].size(); j < L; j++)
an[q_2[i][j]] += ask(a[q_2[i][j]].yy) - ask(a[q_2[i][j]].y);
}
for (i = 1; i <= m; i++)
printf("%d\n", an[i]);
return 0;
}

BZOJ1935或洛谷2163 [SHOI2007]园丁的烦恼的更多相关文章

  1. 洛谷 P2163 [SHOI2007]园丁的烦恼 (离线sort,树状数组,解决三维偏序问题)

    P2163 [SHOI2007]园丁的烦恼 题目描述 很久很久以前,在遥远的大陆上有一个美丽的国家.统治着这个美丽国家的国王是一个园艺爱好者,在他的皇家花园里种植着各种奇花异草. 有一天国王漫步在花园 ...

  2. bzoj1935 [Shoi2007]园丁的烦恼

    bzoj1935 [Shoi2007]园丁的烦恼 有N个点坐标为(xi,yi),M次询问,询问(a,b)-(c,d)的矩形内有多少点. 0≤n≤500000,1≤m≤500000,0≤xi,yi≤10 ...

  3. P2163 [SHOI2007]园丁的烦恼

    题目 P2163 [SHOI2007]园丁的烦恼 做法 关于拆点,要真想拆直接全部用树状数组水过不就好了 做这题我们练一下\(cdq\)分治 左下角\((x1,y1)\)右上角\((x2,y2)\), ...

  4. [LuoguP2163][SHOI2007]园丁的烦恼_CDQ分治

    园丁的烦恼 题目链接:https://www.luogu.org/problem/P2163 数据范围:略. 题解: 树套树过不去,那就$CDQ$分治好了. 有点小细节,但都是$CDQ$分治必要的. ...

  5. 洛谷 P2057 [SHOI2007]善意的投票 解题报告

    P2057 [SHOI2007]善意的投票 题目描述 幼儿园里有n个小朋友打算通过投票来决定睡不睡午觉.对他们来说,这个问题并不是很重要,于是他们决定发扬谦让精神.虽然每个人都有自己的主见,但是为了照 ...

  6. [洛谷P2057][SHOI2007]善意的投票

    题目大意:有$n(n\leqslant300)$个人,每个人可以选择$0$或$1$,每个人最开始有意愿,有$m(m\leqslant\dfrac{n(n-1)}2)$对好朋友.定义一次的冲突数为好朋友 ...

  7. [洛谷P1434] [SHOI2007]滑雪

    题目链接: here we go 题外话: 谁能想到这是一道咕了两年的\(AC\)呢--当年是在搜索还半懂不懂的时候遇到的这道题,感觉真是难得要命()所以一直拖着不做,后面就下意识地逃避了搜索相关的内 ...

  8. 洛谷P2057 [SHOI2007]善意的投票 题解

    题目链接: https://www.luogu.org/problemnew/show/P2057 分析: 由0和1的选择我们直觉的想到0与S一堆,1与T一堆. 但是发现,刚开始的主意并不一定是最终的 ...

  9. 洛谷$P2057\ [SHOI2007]$ 善意的投票 网络流

    正解:网络流 解题报告: 传送门! $umm$看到每个人要么0要么1就考虑最小割呗,,,? 然后贡献有两种?一种是违背自己的意愿,一种是和朋友的意愿违背了 所以考虑开一排点分别表示每个人,然后$S$表 ...

随机推荐

  1. IDEA导入jar包

    http://blog.csdn.net/a153375250/article/details/50851049

  2. kt 集合

    Kotlin初探:Kotlin的集合操作符 2017年11月10日 12:40:03 笨鸟-先飞 阅读数:649   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.c ...

  3. jenkins gradle 实践总结

    执行protoc 通过shell ,那么将gradle 中的proto 项目移除即可 安装 最新的idea 版本 ,并安装 最新kotlin 插件,通过http://plugins.jetbrains ...

  4. JS-cookie和正则表达式

    一 cookie 1 什么是cookie? 会话跟踪技术 2 作用 验证身份,存储信息. 3 特点 大小限制,最多存4k: 每个域下只能存50个cookie: 有时间限制: 只能存放字符串: 只能访问 ...

  5. table-cell http://www.cnblogs.com/StormSpirit/archive/2012/10/24/2736453.html

    http://www.cnblogs.com/StormSpirit/archive/2012/10/24/2736453.html

  6. centos6安装自带php

    一.Centos 6安装自带PHP CentOS 默认仓库中包含了php套件,我们可以直接使用yum安装.下面是最小化安装,我们使用php-fpm来解析php. yum install -y php- ...

  7. 外购半成品报SHORT问题(非验货客户)

    外购半成品报SHORT问题(验货客户)https://www.cnblogs.com/Snowfun/p/8660646.html 下面看非验货客户: 1.检查采购类型是否为F(SAP_MARC),为 ...

  8. jquery使用post方法传值

    1.js代码 <script type="text/javascript"> function addSku(skuId){ var m = $("#m&qu ...

  9. 如何将div中的内容设置为空同时还要保留div本身

    将div的innerHTML置为空即可,下面有2类方法可以实现: 假设有如下的html片段: <div id="test">这是要删除的内容,还要保留test本身< ...

  10. python 进行机器学习

    summary: 本文总结了几种常见的线性回归的的方式以及各种方式的优缺点. 1,简单现性回归(OSL): OSL:就是一种最为简单的普通最小二乘法的实现,y = a0 + a1*x1 + a2*x2 ...