K-th Number

Time Limit: 20000MS   Memory Limit: 65536K
Total Submissions: 58759   Accepted: 20392
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

Source

Northeastern Europe 2004, Northern Subregion
 
 //2017-08-07
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define ll long long
#define mid ((l+r)>>1) using namespace std; const int N = ;
const int M = N * ;
struct node{//第i棵线段树的节点维护插入i个数字,每个区间的数字个数。
int lson, rson, sum;
}tree[M];
int root[N], arr[N], arr2[N], tot;
int n, m, q; void init(){//将原数列排序并去重
tot = ;
for(int i = ; i <= n; i++)
arr2[i] = arr[i];
sort(arr2+, arr2++n);
m = unique(arr2+, arr2++n)-arr2-;
} int getID(int x){
return lower_bound(arr2+, arr2++m, x) - arr2;
} int build(int l, int r){
int rt = tot++;
tree[rt].sum = ;
if(l != r){
tree[rt].lson = build(l, mid);
tree[rt].rson = build(mid+, r);
}
return rt;
} int update(int rt, int pos, int value){
int newroot = tot++, tmp = newroot;
tree[newroot].sum = tree[rt].sum + value;
int l = , r = m;
while(l < r){
if(pos <= mid){
tree[newroot].lson = tot++;
tree[newroot].rson = tree[rt].rson;
newroot = tree[newroot].lson;
rt = tree[rt].lson;
r = mid;
}else{
tree[newroot].rson = tot++;
tree[newroot].lson = tree[rt].lson;
newroot = tree[newroot].rson;
rt = tree[rt].rson;
l = mid+;
}
tree[newroot].sum = tree[rt].sum + value;
}
return tmp;
} int query(int lroot, int rroot, int k){
int l = , r = m;
while(l < r){
if(tree[tree[lroot].lson].sum - tree[tree[rroot].lson].sum >= k){
r = mid;
lroot = tree[lroot].lson;
rroot = tree[rroot].lson;
}else{
l = mid + ;
k -= tree[tree[lroot].lson].sum - tree[tree[rroot].lson].sum;
lroot = tree[lroot].rson;
rroot = tree[rroot].rson;
}
}
return l;
} int main()
{
while(scanf("%d%d", &n, &q)!=EOF){
for(int i = ; i <= n; i++)
scanf("%d", &arr[i]);
init();
root[n+] = build(, m);
for(int i = n; i > ; i--){
int pos = getID(arr[i]);
root[i] = update(root[i+], pos, );
}
while(q--){
int l, r, k;
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", arr2[query(root[l], root[r+], k)]);
}
} return ;
}

POJ2104(可持久化线段树)的更多相关文章

  1. [poj2104]可持久化线段树入门题(主席树)

    解题关键:离线求区间第k小,主席树的经典裸题: 对主席树的理解:主席树维护的是一段序列中某个数字出现的次数,所以需要预先离散化,最好使用vector的erase和unique函数,很方便:如果求整段序 ...

  2. POJ- 2104 hdu 2665 (区间第k小 可持久化线段树)

    可持久化线段树 也叫函数式线段树也叫主席树,其主要思想是充分利用历史信息,共用空间 http://blog.sina.com.cn/s/blog_4a0c4e5d0101c8fr.html 这个博客总 ...

  3. 【可持久化线段树】POJ2104 查询区间第k小值

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 61284   Accepted: 21504 Ca ...

  4. [POJ2104] 区间第k大数 [区间第k大数,可持久化线段树模板题]

    可持久化线段树模板题. #include <iostream> #include <algorithm> #include <cstdio> #include &l ...

  5. 主席树(可持久化线段树) 静态第k大

    可持久化数据结构介绍 可持久化数据结构是保存数据结构修改的每一个历史版本,新版本与旧版本相比,修改了某个区域,但是大多数的区域是没有改变的, 所以可以将新版本相对于旧版本未修改的区域指向旧版本的该区域 ...

  6. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  7. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  8. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  9. HDU 4866 Shooting(持久化线段树)

    view code//第二道持久化线段树,照着别人的代码慢慢敲,还是有点不理解 #include <iostream> #include <cstdio> #include & ...

随机推荐

  1. 友链&&日记

    上面友链,下面日记 友人链 最喜欢galgameの加藤聚聚 初三一本&&\(ACG\)姿势比我还丰厚的yx巨巨 更喜欢galgame的shadowice czx ZigZag胖胖 文文 ...

  2. UVA12888 【Count LCM】(莫比乌斯反演)

    题意:求\(\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)==1]\) \(assume\ n<m\) \(\sum_{i=1}^{n}\sum_{j=1}^{m}[ ...

  3. Mac下通过 brew 安装 Apache 和 PHP

    Mac 自带的是php5.6 ,这里讲一下如果要升级到php7.1需要做的. 1.安装brew https://brew.sh/(官网有提供安装命令 建议使用) ruby -e "$(cur ...

  4. Spring中使用StandardServletMultipartResolver进行文件上传

    从Spring3.1开始,Spring提供了两个MultipartResolver的实现用于处理multipart请求,分别是:CommonsMultipartResolver和StandardSer ...

  5. JFrame、JPanel 、Layout开发的简单例子

    写了Java这么久,居然发现想手写一个带网格袋布局的JFrame,还不记得怎么写,写了这么多代码真不敢说记得所有细节. 幸好,只要记清楚概念就能快速开发.首先,明确一下3种容器类的差别和用途: No. ...

  6. sql开启远程访问

    我们用的是SQL Server 数据库 2008 版本,数据库配置完之后从另一台电脑访问数据库死活连接不上,提示信息如下 “ 无法连接到 *.*.*.*. 在于SQL Server建立连接时出现与网络 ...

  7. [原创]K8 CMS GoastGuard 密码解密工具

    工具: K8 CMS GoastGuard PASS Decrypt编译: VS2012  C# (.NET Framework v4.5)组织: K8搞基大队[K8team]作者: K8拉登哥哥博客 ...

  8. Android Design Support Library——Navigation View

    前沿 Android 从5.0开始引入了Material design元素的设计,这种新的设计语言让整个安卓的用户体验焕然一新,google在Android Design Support Librar ...

  9. Python基础之好玩的字符串格式化f-string格式

    转自白月黑羽 Python3教程 : http://www.python3.vip/doc/tutorial/python/0010/#f-string-格式化 f-string 格式化 f-stri ...

  10. ES6箭头函数this指向

    普通函数中的this: 1. this总是代表它的直接调用者(js的this是执行上下文), 例如 obj.func ,那么func中的this就是obj 2.在默认情况(非严格模式下,未使用 'us ...