题意

给出n个区间和m个区间,从这n个区间里选一个区间a,这m个区间选一个区间b,使得a&b的长度*c最大。

思路

如果这n个区间里有一个区间包含另一个区间,那另外一个区间就可以忽略掉,进行\(O(nlogn)\)去重之后,剩下的区间按左端>点递增的方式排序后的右端点一定也是递增的。

问题变成了对m个区间中的每一个都寻找一个在n个区间里的区间,使得区间交最大。

通过二分两次,可以找到区间相交的最优区间。

剩下的就是在区间内部的区间,用线段树可以做到\(O(mlogn)\)

总复杂度\(O((n+m)logn)\)。

代码

# include <bits/stdc++.h>
using namespace std;
# define lowbit(x) ((x)&(-x))
const double pi=acos(-1.0);
# define eps 1e-8
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int Scan(){
char ch=nc();int sum=0;
while(!(ch>='0'&&ch<='9'))ch=nc();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=nc();
return sum;
}
const int N=200005;
//Code begin.... struct Node{int l, r;}node[N];
int p[N], seg[N<<2]; bool comp(Node a, Node b){return a.l!=b.l?a.l<b.l:a.r>b.r;}
LL operator&(Node a, Node b){
if (a.l<=b.l&&a.r>=b.r) return b.r-b.l;
if (a.l>=b.l&&a.r<=b.r) return a.r-a.l;
return max(min(a.r,b.r)-max(a.l,b.l),0);
}
void push_up(int p){seg[p]=max(seg[p<<1],seg[p<<1|1]);}
void init(int p, int l, int r){
if (l<r) {
int mid=(l+r)>>1;
init(lch); init(rch); push_up(p);
}
else seg[p]=node[l].r-node[l].l;
}
LL query(int p, int l, int r, int L, int R){
if (L>r||R<l) return 0;
if (L<=l&&R>=r) return seg[p];
else {
int mid=(l+r)>>1;
return max(query(lch,L,R),query(rch,L,R));
}
}
int main ()
{
int n, m, a, b, c;
LL ans=0;
n=Scan(); m=Scan();
FOR(i,1,n) node[i].l=Scan(), node[i].r=Scan();
sort(node+1,node+n+1,comp);
int pos=1;
FOR(i,2,n) if (node[i].r>node[pos].r) node[++pos]=node[i];
init(1,1,pos);
FOR(i,1,m) {
a=Scan(); b=Scan(); c=Scan();
int l=1, r=pos+1, mid, L, R;
while (l<r) {
mid=(l+r)>>1;
if (l==mid) break;
if (node[mid].l<a) l=mid;
else r=mid;
}
ans=max(ans,(Node{a,b}&node[l])*c);
L=l+1; l=1; r=pos+1;
while (l<r) {
mid=(l+r)>>1;
if (node[mid].r>b) r=mid;
else l=mid+1;
}
ans=max(ans,(Node{a,b}&node[r])*c);
R=r-1;
if (R>=L) ans=max(ans,query(1,1,pos,L,R)*c); }
cout<<ans<<endl;
return 0;
}

51nod 1480 打广告(二分+线段树)的更多相关文章

  1. HDU4614 Vases and Flowers 二分+线段树

    分析:感觉一看就是二分+线段树,没啥好想的,唯一注意,当开始摆花时,注意和最多能放的比大小 #include<iostream> #include<cmath> #includ ...

  2. 51nod 1364 最大字典序排列(线段树)

    1364 最大字典序排列基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个1至N的排列,允许你做不超过K次操作,每次操作可以将相邻的两个数交换,问能够得到的字 ...

  3. J - Joseph and Tests Gym - 102020J (二分+线段树)

    题目链接:https://cn.vjudge.net/contest/283920#problem/J 题目大意:首先给你n个门的高度,然后q次询问,每一次询问包括两种操作,第一种操作是将当前的门的高 ...

  4. Educational Codeforces Round 61 D 二分 + 线段树

    https://codeforces.com/contest/1132/problem/D 二分 + 线段树(弃用结构体型线段树) 题意 有n台电脑,只有一个充电器,每台电脑一开始有a[i]电量,每秒 ...

  5. 【BZOJ-3110】K大数查询 整体二分 + 线段树

    3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6265  Solved: 2060[Submit][Sta ...

  6. hdu6070 Dirt Ratio 二分+线段树

    /** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...

  7. K-th occurrence HDU - 6704 (后缀数组+二分线段树+主席树)

    大意: 给定串s, q个询问(l,r,k), 求子串s[l,r]的第kk次出现位置. 这是一篇很好的题解: https://blog.csdn.net/sdauguanweihong/article/ ...

  8. 51nod1287(二分/线段树区间最值&单点更新)

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1287 题意:中文题诶- 解法1:b[i] 存储 max(a[0 ...

  9. HDU5008 Boring String Problem(后缀数组 + 二分 + 线段树)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5008 Description In this problem, you are given ...

随机推荐

  1. H.264从SPS中提取视频宽高

    H.264有两种封装模式: (1)annexb模式:传统模式,使用start code来分隔NAL, SPS和PPS是在ES流的头部: (2)mp4模式:没有start code,使用NALU长度(固 ...

  2. day57

    JQ初级 一.认识jQuery 1.什么是jQuery jQuery是对原生JavaScript二次封装的工具函数集合 jQuery是一个简洁高效的且功能丰富的JavaScript工具库 2.jQue ...

  3. JS设置cookie、读取cookie、删除cookie(转载)

    JavaScript是运行在客户端的脚本,因此一般是不能够设置Session的,因为Session是运行在服务器端的.而cookie是运行在客户端的,所以可以用JS来设置cookie.假设有这样一种情 ...

  4. Android 下拉刷新上拉加载PullToRefresh

    https://github.com/823546371/PullToRefresh http://www.jianshu.com/p/0f5d0991efdc

  5. 大数据入门第十八天——kafka整合flume、storm

    一.实时业务指标分析 1.业务 业务: 订单系统---->MQ---->Kakfa--->Storm 数据:订单编号.订单时间.支付编号.支付时间.商品编号.商家名称.商品价格.优惠 ...

  6. 在window下安装第二个mysql

        win7电脑上已经通过安装的方式安装过一个5.5版本的mysql,现在需要再安装一个5.6版本的mysql,因此采用了免安装版的mysql 1.下载         直接去官网下载,社区版   ...

  7. Luogu P1120 小木棍 [数据加强版]

    看了题目心中只有一个字——搜索!!! 但是很显然,朴素的搜索(回溯)绝壁超时. 剪枝&优化(要搞很多,要不然过不了) 1:从小到大搜索它们的因数,这样找到就exit. 2:将数据从大到小排序, ...

  8. Java类加载器学习笔记

    今后一段时间会全面读一下<深入理解Java虚拟机> 在这里先记一下在网上看到的几篇介绍 类加载器 的文章,等读到虚拟机类加载机制再详细介绍. 超详细Java中的ClassLoader详解 ...

  9. 新员工入门 - for测试

    23456人员介绍 XXX 测试工作 [软件] Chrome 浏览器.jsonviewer.Firefox.FireBug HTTP协议与抓包 - fildder.wireshirk等 DB查询工具 ...

  10. flask_admin 笔记三 客户化视图

    客户化视图1, model数据模型参数配置1)配置全局参数内置的ModelView类很适合快速入门. 但是,您需要配置其功能以适合您的特定型号. 这是通过设置ModelView类中提供的配置属性的值来 ...