51nod 1480 打广告(二分+线段树)
题意
给出n个区间和m个区间,从这n个区间里选一个区间a,这m个区间选一个区间b,使得a&b的长度*c最大。
思路
如果这n个区间里有一个区间包含另一个区间,那另外一个区间就可以忽略掉,进行\(O(nlogn)\)去重之后,剩下的区间按左端>点递增的方式排序后的右端点一定也是递增的。
问题变成了对m个区间中的每一个都寻找一个在n个区间里的区间,使得区间交最大。
通过二分两次,可以找到区间相交的最优区间。
剩下的就是在区间内部的区间,用线段树可以做到\(O(mlogn)\)
总复杂度\(O((n+m)logn)\)。
代码
# include <bits/stdc++.h>
using namespace std;
# define lowbit(x) ((x)&(-x))
const double pi=acos(-1.0);
# define eps 1e-8
# define MOD 1000000007
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FDR(i,a,n) for(int i=a; i>=n; --i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int Scan(){
char ch=nc();int sum=0;
while(!(ch>='0'&&ch<='9'))ch=nc();
while(ch>='0'&&ch<='9')sum=sum*10+ch-48,ch=nc();
return sum;
}
const int N=200005;
//Code begin....
struct Node{int l, r;}node[N];
int p[N], seg[N<<2];
bool comp(Node a, Node b){return a.l!=b.l?a.l<b.l:a.r>b.r;}
LL operator&(Node a, Node b){
if (a.l<=b.l&&a.r>=b.r) return b.r-b.l;
if (a.l>=b.l&&a.r<=b.r) return a.r-a.l;
return max(min(a.r,b.r)-max(a.l,b.l),0);
}
void push_up(int p){seg[p]=max(seg[p<<1],seg[p<<1|1]);}
void init(int p, int l, int r){
if (l<r) {
int mid=(l+r)>>1;
init(lch); init(rch); push_up(p);
}
else seg[p]=node[l].r-node[l].l;
}
LL query(int p, int l, int r, int L, int R){
if (L>r||R<l) return 0;
if (L<=l&&R>=r) return seg[p];
else {
int mid=(l+r)>>1;
return max(query(lch,L,R),query(rch,L,R));
}
}
int main ()
{
int n, m, a, b, c;
LL ans=0;
n=Scan(); m=Scan();
FOR(i,1,n) node[i].l=Scan(), node[i].r=Scan();
sort(node+1,node+n+1,comp);
int pos=1;
FOR(i,2,n) if (node[i].r>node[pos].r) node[++pos]=node[i];
init(1,1,pos);
FOR(i,1,m) {
a=Scan(); b=Scan(); c=Scan();
int l=1, r=pos+1, mid, L, R;
while (l<r) {
mid=(l+r)>>1;
if (l==mid) break;
if (node[mid].l<a) l=mid;
else r=mid;
}
ans=max(ans,(Node{a,b}&node[l])*c);
L=l+1; l=1; r=pos+1;
while (l<r) {
mid=(l+r)>>1;
if (node[mid].r>b) r=mid;
else l=mid+1;
}
ans=max(ans,(Node{a,b}&node[r])*c);
R=r-1;
if (R>=L) ans=max(ans,query(1,1,pos,L,R)*c);
}
cout<<ans<<endl;
return 0;
}
51nod 1480 打广告(二分+线段树)的更多相关文章
- HDU4614 Vases and Flowers 二分+线段树
分析:感觉一看就是二分+线段树,没啥好想的,唯一注意,当开始摆花时,注意和最多能放的比大小 #include<iostream> #include<cmath> #includ ...
- 51nod 1364 最大字典序排列(线段树)
1364 最大字典序排列基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 给出一个1至N的排列,允许你做不超过K次操作,每次操作可以将相邻的两个数交换,问能够得到的字 ...
- J - Joseph and Tests Gym - 102020J (二分+线段树)
题目链接:https://cn.vjudge.net/contest/283920#problem/J 题目大意:首先给你n个门的高度,然后q次询问,每一次询问包括两种操作,第一种操作是将当前的门的高 ...
- Educational Codeforces Round 61 D 二分 + 线段树
https://codeforces.com/contest/1132/problem/D 二分 + 线段树(弃用结构体型线段树) 题意 有n台电脑,只有一个充电器,每台电脑一开始有a[i]电量,每秒 ...
- 【BZOJ-3110】K大数查询 整体二分 + 线段树
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6265 Solved: 2060[Submit][Sta ...
- hdu6070 Dirt Ratio 二分+线段树
/** 题目:hdu6070 Dirt Ratio 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6070 题意:给定n个数,求1.0*x/y最小是多少.x ...
- K-th occurrence HDU - 6704 (后缀数组+二分线段树+主席树)
大意: 给定串s, q个询问(l,r,k), 求子串s[l,r]的第kk次出现位置. 这是一篇很好的题解: https://blog.csdn.net/sdauguanweihong/article/ ...
- 51nod1287(二分/线段树区间最值&单点更新)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1287 题意:中文题诶- 解法1:b[i] 存储 max(a[0 ...
- HDU5008 Boring String Problem(后缀数组 + 二分 + 线段树)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5008 Description In this problem, you are given ...
随机推荐
- IDEA导包(以junit为例)
## IDEA导包(以junit为例) 1. 准备junit的jar包: * hamcrest-core-1.3.jar * junit-4.12.jar 2. 在项目中新建文件夹:lib 3. 将j ...
- WebView之禁止调用第三方浏览器
一.WebView官方简洁: 一个显示视图的web页面.在这个类的基础上你可以滚自己的web浏览器或简单地显示一些网上的内容.它使用WebKit渲染引擎显示web页面,包括方法向前和向后导航历史,放大 ...
- 七,ESP8266-UDP(基于Lua脚本语言)
https://www.cnblogs.com/yangfengwu/p/7533302.html 那天朋友问我为什么有UDP Sever 和 UDP Client ,,我说:每个人想的不一样,设 ...
- python_basic
开始学习python ,欢迎一起进步.
- 【LeeCode23】Merge k Sorted Lists★★★
1.题目描述: 2.解题思路: 题意:将K个已经排序的链表合并成一个排序的链表,分析并描述所用算法的复杂度. 方法一:基于“二分”思想的归并排序.本文用非递归和递归两种方法实现. (1)非递归:归并排 ...
- Php的常见错误及错误分析
我们在进行开发工作的时候,难免会遇到PHP的报错,解决这些错误,也是作为PHPer必须掌握的一种技能. 如果程序发生错误,我们能大致的分析出出现错误的原因,对于我们解决这戏错误会有很大的帮助. Not ...
- 《网路对抗》Exp8 WEB基础实践
20155336<网路对抗>Exp8 WEB基础实践 一.基础问题回答 1.什么是表单 表单是一个包含表单元素的区域,表单元素是允许用户在表单中(比如:文本域.下拉列表.单选框.复选框等等 ...
- 编程语法分析之“优先级”和“结合律”
上节<编程语法分析之从表达式说起>中说到表达式,他的主要作用就是返回一个值!那这个值具体是多少,就要看表达式的整个运算过程.要理解表达式的运算过程就必须了解"优先级"和 ...
- .Net Core 分布式微服务框架介绍 - Jimu
系列文章 .Net Core 分布式微服务框架介绍 - Jimu .Net Core 分布式微服务框架 - Jimu 添加 Swagger 支持 一.前言 近些年一直浸淫在 .Net 平台做企业应用开 ...
- Stm32l151+mpu6050+uart读取数据调试
新近买了一个MPU6050模块,如上图,这个模块上的三块黑色分别是:稳压芯片662K,STM8s003f3p6,MPU6050. 根据此模块的说明书,可以使用USB转TTL将模块与上位机连接,通过卖家 ...