python 做回归
1 一元线性回归
线性回归是一种简单的模型,但受到广泛应用,比如预测商品价格,成本评估等,都可以用一元线性模型。y = f(x) 叫做一元函数,回归意思就是根据已知数据复原某些值,线性回归(regression)就是用线性的模型做回归复原。
基本思想:已知一批(x, y)来复原另外未知的值,例如(1,1),(2,2),(3,3),那么(4,?),大家很容易知道(4,4),这就是一元线性回归求解问题
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from sklearn.linear_model import LinearRegression x = [[1], [2],[3], [4], [5], [6]]
y = [[1], [2.1], [2.9], [4.2], [5.1], [5.8]]
model = LinearRegression()
model.fit(x, y) predicted = model.predict([13])[0]
x2 = [[0], [2.5],[5.3],[7.6],[9.1]]
y2 = model.predict(x2)
print model.score(x2, y2)
print predicted fonr = FontProperties()
plt.figure()
plt.title("linearRegression")
plt.xlabel('x')
plt.ylabel('y')
plt.axis([0, 10, 0, 10])
plt.grid(True)
plt.pause(0.4)
plt.plot(x , y, 'k.')
plt.plot(x2 , y2, 'g.')
plt.show() print np.var(x2, ddof = 0)
print model.score(x2, y2)

2 多元线性回归
假设方程为:,求解系数,因为不一定是方阵,所以不能直接求,所以我们对方程两边同乘以,则,由于是方阵,所以两边同时乘以的逆,就可以得到:。
设计二元一次方程:y=1+2x1+3x2
取样本为(1,1,1),(1,1,2),(1,2,1),计算得y=(6,9,8)
注意:这里面常数项1相当于1*x0,只不过这里的x0永远取1
X = [[1,1,1],[1,1,2],[1,2,1]]
y = [[6],[9],[8]]
from numpy.linalg import inv
from numpy import dot, transpose
from numpy.linalg import lstsq x = [[1,1,1], [1,1,2], [1,2,1]]
y = [[6], [9], [8]]
print dot(inv(dot(transpose(x),x)),dot(transpose(x), y))
##===最小二乘法=====================
print lstsq(x, y)[0] from sklearn.linear_model import LinearRegression x = [[1,1,1], [1,1,2], [1,2,1]]
y = [[6], [9], [8]] model = LinearRegression()
model.fit(x, y)
x2 = [[1,3,5]]
y2 = model.predict(x2)
print y2
3 .采用多项式回归
import sys
reload(sys)
sys.setdefaultencoding('utf-8') import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import LinearRegression#导入线性回归模型
from sklearn.preprocessing import PolynomialFeatures# 导入多项式回归模型 plt.figure()
plt.title('single variable')
plt.xlabel('x')
plt.ylabel('y')
plt.axis([30, 400, 100, 400])
plt.grid(True) x = [[50], [100], [150], [200], [250], [300]]
y = [[150], [200], [250], [280], [310], [330]]
x_test = [[250], [300]]
y_test = [[310], [330]]
plt.plot(x, y, 'g.',markersize =20) model = LinearRegression()
x2 = [[30], [400]]
model.fit(x, y)
y2 = model.predict(x2)
plt.plot(x2, y2,label = '$y = ax + c$')
plt.legend()
xx = np.linspace(30, 400, 100)
quadratic_featurizer = PolynomialFeatures(degree = 2)#实例化一个二次多项式
x_train_quadratic = quadratic_featurizer.fit_transform(x)#用二次多项式多样本x做变换
xx_quadratic = quadratic_featurizer.transform(xx.reshape(xx.shape[0], 1))# 把训练好X值的多项式特征实例应用到一系列点上,形成矩阵 regressor_quadratic = LinearRegression()
regressor_quadratic.fit(x_train_quadratic, y)
plt.plot(xx, regressor_quadratic.predict(xx_quadratic),label="$y = ax^2 + bx + c$")
plt.legend() cubic_featurizer = PolynomialFeatures(degree = 3)
x_train_cubic = cubic_featurizer.fit_transform(x)
xx_cubie = cubic_featurizer.transform(xx.reshape(xx.shape[0], 1)) regressor_cubic = LinearRegression()
regressor_cubic.fit(x_train_cubic, y)
plt.plot(xx, regressor_cubic.predict(xx_cubie),label="$y = a_1x^3 + a_2x^2 + a_3x +c $")
plt.legend() print '一元线性回归 r-squared', model.score(x_test, y_test)
x_test_quadratic = quadratic_featurizer.transform(x_test)
print '二次性回归 r-squared', regressor_quadratic.score(x_test_quadratic, y_test)
x_test_cubic = cubic_featurizer.transform(x_test)
print '三次线性回归 r-squared', regressor_cubic.score(x_test_cubic, y_test)
plt.show()


python 做回归的更多相关文章
- 利用Caffe做回归(regression)
		
Caffe应该是目前深度学习领域应用最广泛的几大框架之一了,尤其是视觉领域.绝大多数用Caffe的人,应该用的都是基于分类的网络,但有的时候也许会有基于回归的视觉应用的需要,查了一下Caffe官网,还 ...
 - python做量化交易干货分享
		
http://www.newsmth.NET/nForum/#!article/Python/128763 最近程序化交易很热,量化也是我很感兴趣的一块. 国内量化交易的平台有几家,我个人比较喜欢用的 ...
 - 你用 Python 做过什么有趣的数据挖掘项目?
		
有网友在知乎提问:「你用 Python 做过什么有趣的数据挖掘项目?」 我最近刚开始学习 Python, numpy, scipy 等, 想做一些数据方面的项目,但是之前又没有这方面的经验.所以想知道 ...
 - 使用python做科学计算
		
这里总结一个guide,主要针对刚开始做数据挖掘和数据分析的同学 说道统计分析工具你一定想到像excel,spss,sas,matlab以及R语言.R语言是这里面比较火的,它的强项是强大的绘图功能以及 ...
 - [翻译]用神经网络做回归(Using Neural Networks With Regression)
		
本文英文原文出自这里, 这个博客里面的内容是Java开源, 分布式深度学习项目deeplearning4j的介绍学习文档. 简介: 一般来说, 神经网络常被用来做无监督学习, 分类, 以及回归. 也就 ...
 - 12岁的少年教你用Python做小游戏
		
首页 资讯 文章 频道 资源 小组 相亲 登录 注册 首页 最新文章 经典回顾 开发 设计 IT技术 职场 业界 极客 创业 访谈 在国外 - 导航条 - 首页 最新文章 经典回顾 开发 ...
 - [原创博文] 用Python做统计分析 (Scipy.stats的文档)
		
[转自] 用Python做统计分析 (Scipy.stats的文档) 对scipy.stats的详细介绍: 这个文档说了以下内容,对python如何做统计分析感兴趣的人可以看看,毕竟Python的库也 ...
 - 这几天有django和python做了一个多用户博客系统(可选择模板)
		
这几天有django和python做了一个多用户博客系统(可选择模板) 没完成,先分享下 断断续续2周时间吧,用django做了一个多用户博客系统,现在还没有做完,做分享下,以后等完善了再慢慢说 做的 ...
 - 用python做中文自然语言预处理
		
这篇博客根据中文自然语言预处理的步骤分成几个板块.以做LDA实验为例,在处理数据之前,会写一个类似于实验报告的东西,用来指导做实验,OK,举例: 一,实验数据预处理(python,结巴分词)1.对于爬 ...
 
随机推荐
- iOS 搜索条使用详解
			
在ios开发中搜索条的使用挺常见的,不过之前一直没用到也没细细研究,最近做外包项目的时候刚好用到,在这里记录一下使用的过程,只要理解了原理,其实还是比较简单的!上传的图片有点大,刚好可以看清楚它的使用 ...
 - 2016年第七届蓝桥杯【C++省赛B组】F、G、H、J 题解
			
F. 方格填数 #深搜 题意 有\(10\)个格子,填入0~9的数字.要求:连续的两个数字不能相邻.(左右.上下.对角都算相邻),求可能的填数方案数. +--+--+--+ | | | | +--+- ...
 - Pytest系列(十三)- 重复执行之pytest-repeat的使用
			
写在前面 这个插件,可以帮助我们很好的解决自动化测试过程中的一些偶线性bug难以复现的问题,但前提是,当前自动化脚本是独立的,不依赖任何其他脚本.个人觉得还是失败重运行的一种体现,就和TestNG是一 ...
 - python应用(4):变量与流程
			
程序是什么?就是一堆代码啰.但是代码是有组织而来的,不是凭空堆砌出来的.有一个"古老"的说法:程序=数据结构+算法,意思是,程序是由一些数据结构(数据的组织结构)加上某些算法而形成 ...
 - eclipse 老坑巨滑之内存溢出OOM
			
绪:今天接手一个古老项目,tomcat6+jdk6.被 java.lang.OutOfMemoryError: PermGen space 啪啪打脸, 网上确实有很多解决方法,主要有三种类型:一 ...
 - PyQt(Python+Qt)学习随笔:自定义信号在emit发射信号时报错:AttributeError:  object has no attribute
			
专栏:Python基础教程目录 专栏:使用PyQt开发图形界面Python应用 专栏:PyQt入门学习 老猿Python博文目录 如果使用自定义信号,一定要记得信号是类变量,必须在类中定义,不能在实例 ...
 - PyQt(Python+Qt)学习随笔:model/view架构中类QStandardItemModel的使用方法
			
老猿Python博文目录 老猿Python博客地址 一.概述 QStandardItemModel是QAbstractItemModel的派生类,用于在Model/View架构中存储自定义数据的通用模 ...
 - 【软件测试部署基础】gradle的认识
			
1. gradle简介 Java世界中主要有三大构建工具:Ant.Maven和Gradle.经过几年的发展,Ant几乎销声匿迹.Maven也日薄西山,而Gradle的发展则如日中天. 1.1. ANT ...
 - 虚拟IP原理及使用
			
一.前言 高可用性 HA(High Availability)指的是通过尽量缩短因日常维护操作(计划)和突发的系统崩溃(非计划)所导致的停机时间,以提高系统和应用的可用性.HA 系统是目前企业防止核心 ...
 - JQuery获取父,子,兄弟节点
			
jQuery.parent(expr) // 查找父节点,可以传入expr进行过滤,比如$("span").parent()或者$("span").parent ...