题目描述

Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take.

The map of the region in which FJ lives consists of N intersections (2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection 1, and his farm is located at intersection N. It is possible to reach the farm from his house by traveling along a series of directional roads.

Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road i takes P_i units of time to traverse according to the first GPS unit, and Q_i units of time to traverse according to the second unit (each travel time is an integer in the range 1..100,000).

FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection X to intersection Y) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes).

Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as +2 towards the total.

给你一个N个点的有向图,可能有重边.

有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.

每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T

两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.

如果边(u,v)不在u到n的最短路径上,这条边就受到一次警告,求从1到n最少受到多少次警告。

输入输出格式

输入格式:

  • Line 1: The integers N and M.

Line i describes road i with four integers: A_i B_i P_i Q_i.

输出格式:

  • Line 1: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.

输入输出样例

输入样例#1:

5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5
输出样例#1:

1

说明

There are 5 intersections and 7 directional roads. The first road connects from intersection 3 to intersection 4; the first GPS thinks this road takes 7 units of time to traverse, and the second GPS thinks it takes 1 unit of time, etc.

If FJ follows the path 1 -> 2 -> 4 -> 5, then the first GPS complains on the 1 -> 2 road (it would prefer the 1 -> 3 road instead). However, for the rest of the route 2 -> 4 -> 5, both GPSs are happy, since this is a shortest route from 2 to 5 according to each GPS.


感觉好神

先求两次最短路,然后新建图只要不在一条最短路上就边w++,再求最短路

注意GPS认为的最短路是到达n,所以前两次反向建图

PS:沙茶的数组M写成N

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1e4+,M=5e4+,INF=1e9+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u[M],v[M],w1[M],w2[M];
struct edge{
int u,v,ne,w1,w2;
}e[M];
struct edge2{
int v,ne,w;
}en[M];
int h[N],cnt=;
inline void ins(int u,int v,int w1,int w2){
cnt++;
e[cnt].u=h[u];
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;e[cnt].w1=w1;e[cnt].w2=w2;
}
inline void add(int u,int v,int w){
cnt++;
en[cnt].v=v;en[cnt].w=w;en[cnt].ne=h[u];h[u]=cnt;
}
int q[N],head=,tail=,inq[N],d1[N],d2[N],d3[N];
inline void lop(int &x){if(x==N-) x=;}
void spfa1(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=n;inq[n]=;d[n]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w1;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
}
void spfa2(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=n;inq[n]=;d[n]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w2;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
} void buildGraph(){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=m;i++){
int w=;
if(d1[u[i]]<d1[v[i]]+w1[i]) w++;
if(d2[u[i]]<d2[v[i]]+w2[i]) w++;
add(u[i],v[i],w);//printf("add %d %d %d\n",u,v,w);
}
}
void spfa3(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=;inq[]=;d[]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);//printf("spfa3 %d\n",u);
for(int i=h[u];i;i=en[i].ne){
int v=en[i].v,w=en[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
u[i]=read();v[i]=read();w1[i]=read();w2[i]=read();
ins(v[i],u[i],w1[i],w2[i]);
}
spfa1(d1);
spfa2(d2);
buildGraph();
spfa3(d3);
printf("%d",d3[n]);
}

[USACO14OPEN] Dueling GPS's[最短路建模]的更多相关文章

  1. Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题意 题目描述 Farmer John has recently purchased a new car online, ...

  2. BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's

    P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...

  3. USACO Dueling GPS's

    洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...

  4. BZOJ3538: [Usaco2014 Open]Dueling GPS

    3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 59  Solved: 36[Subm ...

  5. [USACO14OPEN]GPS的决斗Dueling GPS's

    题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...

  6. 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide

    [题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...

  7. 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)

    传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...

  8. POJ 1062 昂贵的聘礼 【带限制的最短路/建模】

    年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请求酋长降低要求.酋长说:" ...

  9. 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...

随机推荐

  1. 背水一战 Windows 10 (15) - 动画: 缓动动画

    [源码下载] 背水一战 Windows 10 (15) - 动画: 缓动动画 作者:webabcd 介绍背水一战 Windows 10 之 动画 缓动动画 - easing 示例演示缓动(easing ...

  2. AJAX与PHP(PHP笔记)--动态验证用户名

    在PHP基础的学习过程中经常会遇到对页面的局部刷新. 比如说,我们在填写用户名的同时,对数据库中的信息进行验证,检查是否充分. 这时就要用到AJAX实现页面的动态加载. 下面例子是简单的PHP与AJA ...

  3. 【新技术】CentOS系统下docker的安装配置及使用详解

    1 docker简介    Docker 提供了一个可以运行你的应用程序的封套(envelope),或者说容器.它原本是dotCloud 启动的一个业余项目,并在前些时候开源了.它吸引了大量的关注和讨 ...

  4. C# new关键字

    在 C# 中,new 关键字可用作运算符.修饰符或约束 1.new 运算符:用于创建对象和调用构造函数.2.new 修饰符:用作修饰符时,new 关键字可以显式隐藏从基类继承的成员.3.new 约束: ...

  5. js中constructor和prototype

    在最开始学习js的时候,我们在讲到原型链和构造函数的时候经常会有一个例子 如果我们定义函数如下: function Foo() { /* .. */ } Foo.prototype.bar = fun ...

  6. JavaScript面向对象与原型

    工厂模式:无法识别对象 function createObject(name, age) { //集中实例化的函数 var obj = new Object(); obj.name = name; o ...

  7. js 20160810

    jquery 获取不到所有相同id 的元素 ,只能获取此id的第一个元素.可以获取所有相同class 的元素

  8. jQuery静态方法isPlainObject,isEmptyObject方法使用和源码分析

    isPlainObject方法 测试对象是否是纯粹的对象(通过 "{}" 或者 "new Object" 创建的) 示例: //测试是否为纯粹的对象 jQuer ...

  9. 二次、三次贝塞尔曲线demo(演示+获取坐标点)

    二次贝塞尔曲线demo: See the Pen quadraticCurveDemo by hanyanjun (@hanyanjun) on CodePen. 我的demo地址(二次) 推荐点击以 ...

  10. js自建方法库(持续更新)

    1.得到一个数,在一个有序数组中应该排在的位置序号: function orderInArr(num,arr) { if(num > arr[0]){ return 1 + arguments. ...