[USACO14OPEN] Dueling GPS's[最短路建模]
题目描述
Farmer John has recently purchased a new car online, but in his haste he accidentally clicked the "Submit" button twice when selecting extra features for the car, and as a result the car ended up equipped with two GPS navigation systems! Even worse, the two systems often make conflicting decisions about the route that FJ should take.
The map of the region in which FJ lives consists of N intersections (2 <= N <= 10,000) and M directional roads (1 <= M <= 50,000). Road i connects intersections A_i (1 <= A_i <= N) and B_i (1 <= B_i <= N). Multiple roads could connect the same pair of intersections, and a bi-directional road (one permitting two-way travel) is represented by two separate directional roads in opposite orientations. FJ's house is located at intersection 1, and his farm is located at intersection N. It is possible to reach the farm from his house by traveling along a series of directional roads.
Both GPS units are using the same underlying map as described above; however, they have different notions for the travel time along each road. Road i takes P_i units of time to traverse according to the first GPS unit, and Q_i units of time to traverse according to the second unit (each travel time is an integer in the range 1..100,000).
FJ wants to travel from his house to the farm. However, each GPS unit complains loudly any time FJ follows a road (say, from intersection X to intersection Y) that the GPS unit believes not to be part of a shortest route from X to the farm (it is even possible that both GPS units can complain, if FJ takes a road that neither unit likes).
Please help FJ determine the minimum possible number of total complaints he can receive if he chooses his route appropriately. If both GPS units complain when FJ follows a road, this counts as +2 towards the total.
给你一个N个点的有向图,可能有重边.
有两个GPS定位系统,分别认为经过边i的时间为Pi,和Qi.
每走一条边的时候,如果一个系统认为走的这条边不是它认为的最短路,就会受到警告一次T T
两个系统是分开警告的,就是说当走的这条边都不在两个系统认为的最短路范围内,就会受到2次警告.
如果边(u,v)不在u到n的最短路径上,这条边就受到一次警告,求从1到n最少受到多少次警告。
输入输出格式
输入格式:
- Line 1: The integers N and M.
Line i describes road i with four integers: A_i B_i P_i Q_i.
输出格式:
- Line 1: The minimum total number of complaints FJ can receive if he routes himself from his house to the farm optimally.
输入输出样例
5 7
3 4 7 1
1 3 2 20
1 4 17 18
4 5 25 3
1 2 10 1
3 5 4 14
2 4 6 5
1
说明
There are 5 intersections and 7 directional roads. The first road connects from intersection 3 to intersection 4; the first GPS thinks this road takes 7 units of time to traverse, and the second GPS thinks it takes 1 unit of time, etc.
If FJ follows the path 1 -> 2 -> 4 -> 5, then the first GPS complains on the 1 -> 2 road (it would prefer the 1 -> 3 road instead). However, for the rest of the route 2 -> 4 -> 5, both GPSs are happy, since this is a shortest route from 2 to 5 according to each GPS.
感觉好神
先求两次最短路,然后新建图只要不在一条最短路上就边w++,再求最短路
注意GPS认为的最短路是到达n,所以前两次反向建图
PS:沙茶的数组M写成N
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int N=1e4+,M=5e4+,INF=1e9+;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m,u[M],v[M],w1[M],w2[M];
struct edge{
int u,v,ne,w1,w2;
}e[M];
struct edge2{
int v,ne,w;
}en[M];
int h[N],cnt=;
inline void ins(int u,int v,int w1,int w2){
cnt++;
e[cnt].u=h[u];
e[cnt].v=v;e[cnt].ne=h[u];h[u]=cnt;e[cnt].w1=w1;e[cnt].w2=w2;
}
inline void add(int u,int v,int w){
cnt++;
en[cnt].v=v;en[cnt].w=w;en[cnt].ne=h[u];h[u]=cnt;
}
int q[N],head=,tail=,inq[N],d1[N],d2[N],d3[N];
inline void lop(int &x){if(x==N-) x=;}
void spfa1(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=n;inq[n]=;d[n]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w1;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
}
void spfa2(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=n;inq[n]=;d[n]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w2;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
} void buildGraph(){
cnt=;
memset(h,,sizeof(h));
for(int i=;i<=m;i++){
int w=;
if(d1[u[i]]<d1[v[i]]+w1[i]) w++;
if(d2[u[i]]<d2[v[i]]+w2[i]) w++;
add(u[i],v[i],w);//printf("add %d %d %d\n",u,v,w);
}
}
void spfa3(int d[]){
for(int i=;i<=n;i++) d[i]=INF;
memset(inq,,sizeof(inq));
head=tail=;
q[tail++]=;inq[]=;d[]=;
while(head!=tail){
int u=q[head++];inq[u]=;lop(head);//printf("spfa3 %d\n",u);
for(int i=h[u];i;i=en[i].ne){
int v=en[i].v,w=en[i].w;
if(d[v]>d[u]+w){
d[v]=d[u]+w;
if(!inq[v]){q[tail++]=v;inq[v]=;lop(tail);}
}
}
}
}
int main(){
n=read();m=read();
for(int i=;i<=m;i++){
u[i]=read();v[i]=read();w1[i]=read();w2[i]=read();
ins(v[i],u[i],w1[i],w2[i]);
}
spfa1(d1);
spfa2(d2);
buildGraph();
spfa3(d3);
printf("%d",d3[n]);
}
[USACO14OPEN] Dueling GPS's[最短路建模]的更多相关文章
- Luogu P3106 [USACO14OPEN]GPS的决斗Dueling GPS's(最短路)
P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题意 题目描述 Farmer John has recently purchased a new car online, ...
- BZOJ 3538 == 洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's
P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 题目描述 Farmer John has recently purchased a new car online, but ...
- USACO Dueling GPS's
洛谷 P3106 [USACO14OPEN]GPS的决斗Dueling GPS's 洛谷传送门 JDOJ 2424: USACO 2014 Open Silver 2.Dueling GPSs JDO ...
- BZOJ3538: [Usaco2014 Open]Dueling GPS
3538: [Usaco2014 Open]Dueling GPS Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 59 Solved: 36[Subm ...
- [USACO14OPEN]GPS的决斗Dueling GPS's
题目概况 题目描述 给你一个\(N\)个点的有向图,可能有重边. 有两个\(GPS\)定位系统,分别认为经过边\(i\)的时间为\(P_i\),和\(Q_i\). 每走一条边的时候,如果一个系统认为走 ...
- 洛谷 3106 [USACO14OPEN]GPS的决斗Dueling GPS's 3720 [AHOI2017初中组]guide
[题解] 这两道题是完全一样的. 思路其实很简单,对于两种边权分别建反向图跑dijkstra. 如果某条边在某一种边权的图中不是最短路上的边,就把它的cnt加上1.(这样每条边的cnt是0或1或2,代 ...
- 2018.07.22 洛谷P3106 GPS的决斗Dueling GPS's(最短路)
传送门 图论模拟题. 这题直接写3个(可以压成一个)spfa" role="presentation" style="position: relative;&q ...
- POJ 1062 昂贵的聘礼 【带限制的最短路/建模】
年轻的探险家来到了一个印第安部落里.在那里他和酋长的女儿相爱了,于是便向酋长去求亲.酋长要他用10000个金币作为聘礼才答应把女儿嫁给他.探险家拿不出这么多金币,便请求酋长降低要求.酋长说:" ...
- 【BZOJ】3538: [Usaco2014 Open]Dueling GPS(spfa)
http://www.lydsy.com/JudgeOnline/problem.php?id=3538 题意不要理解错QAQ,是说当前边(u,v)且u到n的最短距离中包含这条边,那么这条边就不警告. ...
随机推荐
- 使用SwipeListView实现滑动效果
QQ的滑动删除效果很不错,要实现这种效果,可以使用SwipeListView.1. 下载com.fortysevendeg.swipelistview这个项目(以前GitHub上有,现在GitHub上 ...
- 仿饿了点餐界面2个ListView联动
如图是效果图 是仿饿了的点餐界面 1.点击左侧的ListView,通过在在适配器中设置Item来改变颜色,再通过notifyDataSetInvalidated来刷新并用lv_home.setSele ...
- for循环语句的笔试
首先对for循环的初始条件进行调用打印A,之后判断语句输出B,第三个条件先不使用,直接进入循环内部 打印D,再到C:第二次判断i=1,A这个条件不使用了,进入B判定,再是D,C,最后进行判定输出B
- Lind.DDD.Paging分页模块介绍
回到目录 分页组件网上有很多,MVC.Pager,JSPager等,通过实现方式大体分为前端分页和后端分页,前端分页是前台对list内存本地集合进行分页,缺点就是在大数据情况下,内存占用过高:后端分页 ...
- [连载]《C#通讯(串口和网络)框架的设计与实现》- 5.串口和网络统一IO设计
目 录 第五章 串口和网络统一IO设计... 2 5.1 统一IO接口... 2 5.1.1 串口IO.. 4 5.1.2 网络IO.. ...
- MongoDB分片(sharding)
1.概念 分片(sharding)是指将数据拆分,将其分散存在不同的机器上的过程.有时也用分区(partitioning)来表示这个概念.将数据分散到不同的机器上,不需要功能强大的大型计算机就可以储存 ...
- 简要分析webpack打包后代码
开门见山 1.打包单一模块 webpack.config.js module.exports = { entry:"./chunk1.js", output: { path: __ ...
- 搭建基于 STM32 和 rt-thread 的开发平台
我们需要平台 如果说,SharePoint 的价值之一在于提供了几乎开箱即用的 innovation 环境,那么,智能设备的开发平台也一样.不必每次都从头开始,所以需要固定的工作室和开发平台作为创新的 ...
- UTF-8和GBK等中文字符编码格式介绍及相互转换
我们有很多时候需要使用中文编码格式,比如gbk.gb2312等,但是因为主要针对中文编码设置,因此并不完全通用,这样一来就有了在各编码间相互转换的需求,比如和UTF8的转换.可是在我使用的过程中,却发 ...
- UIViewController相关知识
title: UIViewController 相关知识date: 2015-12-13 11:50categories: IOS tags: UIViewController 小小程序猿我的博客:h ...